Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chemistry ; 30(43): e202401540, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38805347

RESUMO

Imines are essential intermediates in organic transformations, and is generally produced by dehydrogenative condensation of alcohols and amines with the assist of specialized catalysts and additives. Heterogeneous photocatalysis provides a sustainable platform for such process without the using of toxic oxidants, yet a functionalized photocatalyst with optimized co-adsorption of reactants needs to be developed to promote the stoichiometric oxidative condensation under ambient conditions. Here, we show that benzyl alcohol and aniline adsorb non-interferingly on the Fe node and the linker sites of the MIL-53(Fe) metal organic frameworks (MOFs), respectively. The co-adsorption of both reactants barely influences the reduction of molecular oxygen to generate oxygen radicals, resulting in efficient formation of benzaldehyde under visible light. Additionally, the weak adsorption of water together with surface acidity of the MIL-53(Fe) promote a rapid condensation of benzaldehyde with aniline and the depletion of generated water, achieving an efficient C-N bond creation for a wide range of substrates.

2.
J Am Chem Soc ; 145(9): 5353-5362, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36853085

RESUMO

Photocatalysis provides an eco-friendly route for the hydrogenation of aromatic carbonyls to O-free aromatics, which is an important refining process in the chemical industry that is generally carried out under high pressure of hydrogen at elevated temperatures. However, aromatic carbonyls are often only partially hydrogenated to alcohols, which readily desorbs and are hardly further deoxygenated under ambient conditions. Here, we show that by constructing an oxide surface over the Pd cocatalyst supported on graphitic carbon nitride, an alternative hydrogenation path of aromatic carbonyls becomes available via a step-wise acetalization and hydrogenation, thus allowing efficient and selective production of O-free aromatics. The PdO surface allows for optimum adsorption of reactants and intermediates and rapid abstraction of hydrogen from the alcohol donor, favoring fast acetalization of the carbonyls and their consecutive hydrogenation to O-free hydrocarbons. The photocatalytic hydrogenation of benzaldehyde into toluene shows a high selectivity of >90% and a quantum efficiency of ∼10.2% under 410 nm irradiation. By adding trace amounts of HCl to the reaction solution, the PdO surface remains stable and active for long-term operation at high concentrations, offering perspective for practical applications.

3.
J Ethnopharmacol ; 321: 117537, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38043756

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Bufei Yishen formula (BYF) is clinically used to treat chronic obstructive pulmonary disease (COPD). Effective-component compatibility (ECC) is a combination of five active components derived from BYF, which has an equal effect on COPD to BYF. Our previous study has also demonstrated that ECC can protect COPD rats against PM2.5 exposure. However, the precise mechanisms remain to be elucidated. AIM OF THE STUDY: To explore the mechanism underlying the anti-inflammatory effects of ECC-BYF against PM2.5-accelerated COPD. MATERIALS AND METHODS: MH-S macrophages were stimulated by PM2.5 suspension to establish an in vitro model. Western blotting and immunofluorescent staining were used to measure the protein levels of autophagy markers. ELISA and quantitative PCR were used to detect the levels of inflammatory cytokines. In vivo, an established PM2.5-accelerated COPD rat model was used to determine the protective effect of ECC-BYF. Lung function, pathology, autophagy, and inflammatory mediators were detected. RESULTS: Firstly, we observed a significantly increased number of macrophages in the lungs upon PM2.5 exposure. Then, decreased autophagy flux while elevated inflammation was detected in PM2.5-exposed rats and MH-S cells. In MH-S cells, ECC-BYF significantly suppressed the PM2.5-increased inflammatory cytokines production, which was accompanied by the enhancement of autophagy flux. An autophagy inhibitor counteracted the anti-inflammatory effect elicited by ECC-BYF. In addition, ECC-BYF stimulated Foxo3 nuclear translocation and upregulated Foxo3 expression, whereas Foxo3 knockdown abrogated the inhibitory effect of ECC-BYF on inflammation. In PM2.5-accelerated COPD rats, ECC-BYF also attenuated the autophagy disruption and increased Foxo3 in the lungs, finally resulting in a suppression of pulmonary inflammation and an enhancement of lung function. CONCLUSION: ECC-BYF can ameliorate PM2.5-aggravated inflammation in COPD, which might be associated with the enhancement of autophagy flux in alveolar macrophages through the activation of Foxo3 signals.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Ratos , Animais , Doença Pulmonar Obstrutiva Crônica/metabolismo , Inflamação/tratamento farmacológico , Macrófagos/metabolismo , Citocinas/metabolismo , Autofagia , Material Particulado/toxicidade , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
4.
ACS Appl Mater Interfaces ; 13(16): 19282-19290, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33866783

RESUMO

Daytime radiative cooling has attracted considerable attention recently due to its tremendous potential for passively exploiting the coldness of the universe as clean and renewable energy. Many advanced materials with novel photonic micro/nanostructures have already been developed to enable highly efficient daytime radiative coolers, among which the flexible hierarchical porous coatings (HPCs) are a more distinguished category. However, it is still hard to precisely control the size distribution of the randomized pores within the HPCs, usually resulting in a deficient solar reflection at the near-infrared optical regime under diverse fabrication conditions of the coatings. We report here a three-phase (i.e., air pore-phase, microsphere-phase, and polymer-phase) self-assembled hybrid porous composite coating, which dramatically increases the average solar reflectance and yields remarkable temperature drops of ∼10 and ∼ 30 °C compared to the ambient circumstance and black paint, respectively, according to the rooftop measurements. Mie theory and Monte Carlo simulations reveal the origin of the low reflectivity of as-prepared two-phase porous HPCs, and the optical cooling improvement of the three-phase porous composite coatings is attributed to the newly generated interfaces possessing the high scattering efficiency between the hierarchical pores and silica microspheres hybridized with appropriate mass fractions. As a result, the hybrid porous composite approach enhances the whole performance of the coatings, which provides a promising alternative to the flexible daytime radiative cooler.

5.
J Pain Res ; 13: 937-946, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32440199

RESUMO

BACKGROUND: This study aims to compare analgesic effect and side effects of oxycodone and sufentanil in transition analgesia and patient-controlled intravenous analgesia (PCIA) after gynecological tumor operation under general anesthesia. PATIENTS AND METHODS: A prospective, randomized, double-blind research was conducted. Patients undergoing elective gynecological tumor surgery were randomized into four groups: Group S (sufentanil transition analgesia and sufentanil PCIA), Group OS (oxycodone transition analgesia and sufentanil PCIA), Group SO (sufentanil transition analgesia and oxycodone PCIA) and Group O (oxycodone transition analgesia and oxycodone PCIA). The primary outcomes were Numerical Rating Scale (NRS) at rest and coughing, accumulated opioid consumption in PCIA and patients' satisfaction. RESULTS: Patients in Group OS and Group O showed shorter time of consciousness recovery and extubation after surgery. Accumulated opioid consumption in PCIA (equal to morphine) in Group SO and Group O was significantly less than that in Group S and Group OS. Patients in Group O showed lower NRS at rest and coughing, but higher patients' satisfaction 3, 24 and 48 hours after surgery. Patients in Group SO and Group O showed a shorter time of intestinal recovery, first feeding and first-time movement. CONCLUSION: Both oxycodone and sufentanil provided adequate pain relief in transitional analgesia and PCIA treatment after surgery. Oxycodone without background infusion showed less analgesic drug consumption and faster recovery than sufentanil with background infusion in PCIA after gynecological tumor operation under general anesthesia.

6.
Exp Ther Med ; 17(2): 1463-1469, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30680029

RESUMO

The aim of the current study was to investigate whether metformin could counteract sevoflurane-induced neurotoxicity. In vitro experiments on the sevoflurane-induced nerve injury were performed using hippocampal neurons. Neuronal apoptosis was detected by an MTT assay. Protein expression levels of apoptosis-associated genes, including cleaved-caspase-3, apoptosis regulator BAX and apoptosis regulator Bcl-2 were detected by western blot analysis. The mechanism of the effect of metformin on sevoflurane-induced neuronal apoptosis was investigated using a sphingosine 1-phosphate receptor 1 (S1P1) antagonist (VPC23019) and mitogen-activated protein kinase kinase inhibitor (U0126). The current study revealed that metformin may reduce sevoflurane-induced neuronal apoptosis via activating mitogen-activated protein kinase (ERK)1/2 phosphorylation. VPC23019 and U0126 eliminated the neuroprotective effects of metformin on neuronal apoptosis, which suggests that metformin is able to protect against sevoflurane-induced neurotoxicity via activation of the S1P1-dependent ERK1/2 signaling pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA