Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Int J Mol Sci ; 24(12)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37373369

RESUMO

Influenza viruses are respiratory pathogens that are major threats to human health. Due to the emergence of drug-resistant strains, the use of traditional anti-influenza drugs has been hindered. Therefore, the development of new antiviral drugs is critical. In this article, AgBiS2 nanoparticles were synthesized at room temperature, using the bimetallic properties of the material itself to explore its inhibitory effect on the influenza virus. By comparing the synthesized Bi2S3 and Ag2S nanoparticles, it is found that after adding the silver element, the synthesized AgBiS2 nanoparticles have a significantly better inhibitory effect on influenza virus infection than Bi2S3 and Ag2S nanoparticles. Recent studies have shown that the inhibitory effect of AgBiS2 nanoparticles on the influenza virus mainly occurs in the stages of influenza virus-cell internalization and intracellular replication. In addition, it is found that AgBiS2 nanoparticles also have prominent antiviral properties against α and ß coronaviruses, indicating that AgBiS2 nanoparticles have significant potential in inhibiting viral activity.


Assuntos
Influenza Humana , Nanopartículas , Infecções por Orthomyxoviridae , Orthomyxoviridae , Humanos , Influenza Humana/tratamento farmacológico , Antivirais/farmacologia , Antivirais/uso terapêutico , Replicação Viral
2.
Molecules ; 28(11)2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37298991

RESUMO

Polymerase chain reaction (PCR) has extensive bioanalytical applications in molecular diagnostics and genomic research studies for rapid detection and precise genomic amplification. Routine integrations for analytical workflow indicate certain limitations, including low specificity, efficiency, and sensitivity in conventional PCR, particularly towards amplifying high guanine-cytosine (GC) content. Further, there are many ways to enhance the reaction, for example, using different PCR strategies such as hot-start/touchdown PCR or adding some special modifications or additives such as organic solvents or compatible solutes, which can improve PCR yield. Due to the widespread use of bismuth-based materials in biomedicine, which have not yet been used for PCR optimization, this attracts our attention. In this study, two bismuth-based materials that are inexpensive and readily available were used to optimize GC-rich PCR. The results demonstrated that ammonium bismuth citrate and bismuth subcarbonate effectively enhanced PCR amplification of the GNAS1 promoter region (∼84% GC) and APOE (75.5% GC) gene of Homo sapiens mediated by Ex Taq DNA polymerase within the appropriate concentration range. Combining DMSO and glycerol additives was critical in obtaining the target amplicons. Thus, the solvents mixed with 3% DMSO and 5% glycerol were used in bismuth-based materials. That allowed for better dispersion of bismuth subcarbonate. As for the enhanced mechanisms, the surface interaction of PCR components, including Taq polymerase, primer, and products with bismuth-based materials, was maybe the main reason. The addition of materials can reduce the melting temperature (Tm), adsorb polymerase and modulate the amount of active polymerase in PCR, facilize the dissociation of DNA products, and enhance the specificity and efficiency of PCR. This work provided a class of candidate enhancers for PCR, deepened our understanding of the enhancement mechanisms of PCR, and also explored a new application field for bismuth-based materials.


Assuntos
Dimetil Sulfóxido , Glicerol , Humanos , Bismuto , Solventes , Reação em Cadeia da Polimerase/métodos
3.
Molecules ; 27(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36557991

RESUMO

Polymerase Chain Reaction (PCR) is one of the most common technologies used to produce millions of copies of targeted nucleic acid in vitro and has become an indispensable technique in molecular biology. However, it suffers from low efficiency and specificity problems, false positive results, and so on. Although many conditions can be optimized to increase PCR yield, such as the magnesium ion concentration, the DNA polymerases, the number of cycles, and so on, they are not all-purpose and the optimization can be case dependent. Nano-sized materials offer a possible solution to improve both the quality and productivity of PCR. In the last two decades, nanoparticles (NPs) have attracted significant attention and gradually penetrated the field of life sciences because of their unique chemical and physical properties, such as their large surface area and small size effect, which have greatly promoted developments in life science and technology. Additionally, PCR technology assisted by NPs (NanoPCR) such as gold NPs (Au NPs), quantum dots (QDs), and carbon nanotubes (CNTs), etc., have been developed to significantly improve the specificity, efficiency, and sensitivity of PCR and to accelerate the PCR reaction process. This review discusses the roles of different types of NPs used to enhance PCR and summarizes their possible mechanisms.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Nanotubos de Carbono , Pontos Quânticos , Nanopartículas Metálicas/química , Reação em Cadeia da Polimerase/métodos , Ouro/química
4.
Heliyon ; 10(10): e30886, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38784562

RESUMO

Human respiratory syncytial virus (RSV) is an underlying cause of lower respiratory illnesses in children, elderly and immunocompromised adults. RSV contains multiple structural and non-structural proteins with two major glycoproteins that control the initial phase of infection, fusion glycoprotein and the attachment (G) glycoprotein. G protein attaches to the ciliated cells of airways initiating the infection. The hypervariable G protein plays a vital role in evolution of RSV strains. We employed multiple bioinformatics tools on systematically accessed large-scale data to evaluate mutations, evolutionary history, and phylodynamics of RSV. Mutational analysis of central conserved region (CCR) on G protein-coding sequences between 163 and 189 positions revealed frequent mutations at site 178 in human RSV (hRSV) A while arginine to glutamine substitutions at site 180 positions in hRSV B, remained prevalent from 2009 to 2014. Phylogenetic analysis indicates multiple signature mutations within G protein responsible for diversification of clades. The USA and China have highest number of surveillance records, followed by Kenya. Markov Chain Monte Carlo Bayesian skyline plot revealed that RSV A evolved steadily from 1990 to 2000, and rapidly between 2003 and 2005. Evolution of RSV B continued from 2003 to 2022, with a high evolution stage from 2016 to 2020. Throughout evolution, cysteine residues maintained their strict conserved states while CCR has an entropy value of 0.0039(±0.0005). This study concludes the notion that RSV G glycoprotein is continuously evolving while the CCR region of G protein maintains its conserved state providing an opportunity for CCR-specific monoclonal antibodys (mAbs) and inhibitors as potential candidates for immunoprophylaxis.

5.
J Infect Dev Ctries ; 17(6): 868-873, 2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37406074

RESUMO

INTRODUCTION: Influenza is a severe respiratory viral infection that causes significant morbidity and mortality, due to annual epidemics and unpredictable pandemics. With the extensive use of neuraminidase inhibitor (NAI) drugs, the influenza B virus has carried different drug-resistant mutations. Thus, this study aimed to analyze the prevalence of drug-resistant mutations of the influenza B virus. METHODOLOGY: Near full-length sequences of the neuraminidase (NA) region of all influenza B viruses from January 1, 2006, to December 31, 2018, were downloaded from public databases GISAID and NCBI. Multiple sequence alignments were performed using Clustal Omega 1.2.4 software. Subsequently, phylogenetic trees were constructed by FastTree 2.1.11 and clustered by ClusterPickergui_1.2.3.JAR. Then, the major drug resistance sites and surrounding auxiliary sites were analyzed by Mega-X and Weblogo tools. RESULTS: Among the amino acid sequences of NA from 2006 to 2018, only Clust04 in 2018 carried a D197N mutation of the NA active site, while other drug resistance sites were conserved without mutation. According to the Weblogo analysis, a large number of N198, S295, K373, and K375 mutations were found in the amino acid residues at the auxiliary sites surrounding D197, N294, and R374. CONCLUSIONS: We found the D197N mutation in Clust04 of the 2018 influenza B virus, with a large number of N198, S295, K373, and K375 mutations in the helper sites around N197, N294, and R374 from 2006 to 2018. NA inhibitors are currently the only kind of specific antiviral agent for the influenza B virus, although these mutations cause mild NAIs resistance.


Assuntos
Epidemias , Influenza Humana , Humanos , Antivirais/farmacologia , Antivirais/uso terapêutico , Farmacorresistência Viral/genética , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Vírus da Influenza B/genética , Vírus da Influenza B/metabolismo , Influenza Humana/tratamento farmacológico , Influenza Humana/epidemiologia , Neuraminidase/genética , Neuraminidase/química , Neuraminidase/metabolismo , Filogenia
6.
Nanomaterials (Basel) ; 11(8)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34443959

RESUMO

Virus infection is one of the threats to the health of organisms, and finding suitable antiviral agents is one of the main tasks of current researchers. Metal ions participate in multiple key reaction stages of organisms and maintain the important homeostasis of organisms. The application of synthetic metal-based nanomaterials as an antiviral therapy is a promising new research direction. Based on the application of synthetic metal-based nanomaterials in antiviral therapy, we summarize the research progress of metal-based nanomaterials in recent years. This review analyzes the three inhibition pathways of metal nanomaterials as antiviral therapeutic materials against viral infections, including direct inactivation, inhibition of virus adsorption and entry, and intracellular virus suppression; it further classifies and summarizes them according to their inhibition mechanisms. In addition, the use of metal nanomaterials as antiviral drug carriers and vaccine adjuvants is summarized. The analysis clarifies the antiviral mechanism of metal nanomaterials and broadens the application in the field of antiviral therapy.

7.
Front Med (Lausanne) ; 8: 626953, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33614683

RESUMO

Objectives: To initially clarify the efficacy and tolerability of nintedanib in patients with idiopathic-inflammatory-myopathy-related interstitial lung disease (IIM-ILD). Methods: A retrospective, real-world analysis was conducted in IIM-ILD patients who regularly received outpatient visit or hospitalization from January 2018 to March 2020 in three centers. And the patients were divided into two groups depending on presence or absence of nintedanib therapy. Comparisons, Kaplan-Meier survival analysis and propensity score matching were made to identify difference in time to death from any cause, incidence of rapidly progressive interstitial lung disease (RP-ILD) and comorbidity of pulmonary infection between the two groups. The following logistic regression analyses and Cox proportional-hazard regression analyses were used to verify the therapeutic value of nintedanib as well as clinical significance of other factors. Adverse events were descriptively recorded. Results: Thirty-six patients receiving nintedanib therapy and 115 patients without use of nintedanib were included. Before and after propensity score matching, the primary comparisons revealed better survival (P = 0.015, P = 0016, respectively) and lower incidence of RP-ILD (P = 0.017, P = 0.014, respectively) in patients with nintedanib therapy. Logistic regression analysis identified that disease activity (P < 0.001), percent-predicted diffusing capacity of the lung for carbon monoxide (DLCO%, P = 0.036), nintedanib therapy (P = 0.004, OR value = 0.072) and amyopathic dermatomyositis (ADM, P = 0.012) were significantly correlated with RP-ILD. Cox proportional hazards regression analysis suggested that disease activity (P < 0.001), anti-MDA5 antibody (P < 0.001) and nintedanib therapy (P = 0.013, HR value=0.268) were significantly associated with survival of IIM-ILD patients. Similar results can also be seen in analyses after propensity score matching. In the 36 patients with nintedanib therapy, diarrhea was the most common adverse event (44.4%) and hepatic insufficiency contributed to most dosage reduction (44.4% of nine patients) or therapy discontinuation (60.0% of five patients). Conclusions: Nintedanib was found to reduce incidence of RP-ILD and improve survival in IIM-ILD patients in a real-world setting. Anti-MDA5 antibody could be taken as a risk factor for unfavorable outcome. ADM was significantly correlated with occurrence of RP-ILD. In addition to the most frequent diarrhea, hepatic insufficiency was closely related to dosage reduction or therapy discontinuation.

8.
J Immunol Res ; 2019: 6929286, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31828173

RESUMO

OBJECTIVE: Iguratimod, a novel disease-modifying anti-rheumatic drug for the treatment of rheumatoid arthritis, has been approved in China and Japan. Here, we aimed to find whether iguratimod can inhibit the aggressive behavior and promote apoptosis of rheumatoid fibroblast-like synoviocytes (RA-FLSs). METHODS: The proliferation of RA-FLSs was assessed by 5-ethynyl-2'-deoxyuridine test and Cell Counting Kit-8. Migration and invasion were determined by the wound test and a transwell assay. Apoptosis was tested by flow cytometry. The mRNA expression of matrix metalloproteinases (MMPs) and proinflammatory cytokines in RA-FLSs were measured by quantitative PCR and ELISA. To gain insight into the molecular signaling mechanisms, we determined the effect of iguratimod on the activation of mitogen-activated protein kinases (MAPK) signaling pathways by the cellular thermal shift assay (CETSA) and western blot. RESULTS: Iguratimod treatment significantly reduced the proliferation, migration, and invasive capacities of RA-FLSs in a dose-dependent manner in vitro. MMP-1, MMP-3, MMP-9, Interleukin-6 (IL-6), and monocyte chemoattractant protein-1 mRNA and protein levels were all decreased after treatment with iguratimod. Furthermore, tumor necrosis factor-alpha- (TNF-α-) induced expression of phosphorylated c-Jun N-terminal kinases (JNK) and P38 MAPK were inhibited by iguratimod. Additionally, iguratimod promoted the apoptosis of RA-FLSs. Most importantly, iguratimod was shown to directly interact with JNK and P38 protein by CETSA assay. Moreover, activating transcription factor 2 (ATF-2), a substrate of both JNK and P38, was suppressed by iguratimod. CONCLUSIONS: Our findings suggested that the therapeutic effects of iguratimod on RA might be, in part, due to targeting the aggressive behavior and apoptosis of RA-FLSs.


Assuntos
Antirreumáticos/farmacologia , Cromonas/farmacologia , Fibroblastos/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Imunossupressores/farmacologia , Sulfonamidas/farmacologia , Sinoviócitos/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Artrite Reumatoide/genética , Artrite Reumatoide/imunologia , Artrite Reumatoide/patologia , Artrite Reumatoide/cirurgia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Quimiocina CCL2/genética , Quimiocina CCL2/imunologia , Feminino , Fibroblastos/imunologia , Fibroblastos/patologia , Regulação da Expressão Gênica/imunologia , Humanos , Interleucina-6/genética , Interleucina-6/imunologia , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Proteínas Quinases JNK Ativadas por Mitógeno/imunologia , Metaloproteinase 1 da Matriz/genética , Metaloproteinase 1 da Matriz/imunologia , Metaloproteinase 3 da Matriz/genética , Metaloproteinase 3 da Matriz/imunologia , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/imunologia , Cultura Primária de Células , Transdução de Sinais , Sinovectomia , Membrana Sinovial/imunologia , Membrana Sinovial/patologia , Sinoviócitos/imunologia , Sinoviócitos/patologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/imunologia
9.
Oncol Lett ; 11(2): 1143-1145, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26893708

RESUMO

The present study describes the case of an 18-year-old adolescent male exhibiting acute lymphocytic leukemia (ALL), complicated by the onset of the symptom of sacroiliitis mimicking spondyloarthritis. Atypical features including an enlarged spleen, poor effects of non-steroidal anti-inflammatory drug therapy, low levels of hemoglobin, a low platelet count, a low neutrophil count and increased levels of monocytes, indicated the possibility of hematological malignancy. Bone marrow examination confirmed the diagnosis of ALL. The patient received chemotherapy and the symptoms were dramatically relieved. To the best of our knowledge, the current study reports the second published case of a patient with ALL presenting with sacroiliitis. Sacroiliitis as an onset manifestation of ALL may result in misdiagnosis, therefore, a differential diagnosis is essential when atypical features are present.

11.
J Immunol Res ; 2015: 534648, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26380323

RESUMO

The activated NF-κB signaling pathway plays an important role in pathogenesis of primary Sjögren's syndrome (pSS). The inhibitor of κB (IκB) kinase (IKK) family such as IKKα, IKKß, IKKγ, and IKKε, is required for this signaling. Our aim was to investigate the role of IKKα/ß/γ/ε in patients with untreated pSS. In minor salivary glands from pSS patients, phosphorylated IKKε (pIKKε), pIκBα, and pNF-κB p65 (p-p65) were highly expressed in ductal epithelium and infiltrating mononuclear cells by immunohistochemistry, compared to healthy individuals. pIKKα/ß and pIKKγ were both negative. And pIKKε positively related to expression of p-p65. Furthermore, pIKKε and p-p65 expression significantly correlated with biopsy focus score and overall disease activity. Meanwhile, in peripheral blood mononuclear cells from pSS patients, pIKKε, total IKKε, pIKKα/ß, and p-p65 were significantly increased by western blot, compared to healthy controls. However, there was no difference in IKKγ and IκBα between pSS patients and healthy individuals. These results demonstrated an abnormality of IKKε, IκBα, and NF-κB in pSS, suggesting a potential target of treatment for pSS based on the downregulation of IKKε expression and deregulation of NF-κB pathway.


Assuntos
Quinase I-kappa B/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , Síndrome de Sjogren/imunologia , Síndrome de Sjogren/metabolismo , Adulto , Biópsia , Estudos de Coortes , Epitélio/metabolismo , Feminino , Expressão Gênica , Humanos , Quinase I-kappa B/genética , Imuno-Histoquímica , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/patologia , Masculino , Pessoa de Meia-Idade , NF-kappa B/genética , Fosforilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Síndrome de Sjogren/diagnóstico , Síndrome de Sjogren/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA