Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cancer Imaging ; 24(1): 55, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38725034

RESUMO

BACKGROUND: This study aimed to evaluate the efficacy of radiomics signatures derived from polyenergetic images (PEIs) and virtual monoenergetic images (VMIs) obtained through dual-layer spectral detector CT (DLCT). Moreover, it sought to develop a clinical-radiomics nomogram based on DLCT for predicting cancer stage (early stage: stage I-II, advanced stage: stage III-IV) in pancreatic ductal adenocarcinoma (PDAC). METHODS: A total of 173 patients histopathologically diagnosed with PDAC and who underwent contrast-enhanced DLCT were enrolled in this study. Among them, 49 were in the early stage, and 124 were in the advanced stage. Patients were randomly categorized into training (n = 122) and test (n = 51) cohorts at a 7:3 ratio. Radiomics features were extracted from PEIs and 40-keV VMIs were reconstructed at both arterial and portal venous phases. Radiomics signatures were constructed based on both PEIs and 40-keV VMIs. A radiomics nomogram was developed by integrating the 40-keV VMI-based radiomics signature with selected clinical predictors. The performance of the nomogram was assessed using receiver operating characteristic (ROC) curves, calibration curves, and decision curves analysis (DCA). RESULTS: The PEI-based radiomics signature demonstrated satisfactory diagnostic efficacy, with the areas under the ROC curves (AUCs) of 0.92 in both the training and test cohorts. The optimal radiomics signature was based on 40-keV VMIs, with AUCs of 0.96 and 0.94 in the training and test cohorts. The nomogram, which integrated a 40-keV VMI-based radiomics signature with two clinical parameters (tumour diameter and normalized iodine density at the portal venous phase), demonstrated promising calibration and discrimination in both the training and test cohorts (0.97 and 0.91, respectively). DCA indicated that the clinical-radiomics nomogram provided the most significant clinical benefit. CONCLUSIONS: The radiomics signature derived from 40-keV VMI and the clinical-radiomics nomogram based on DLCT both exhibited exceptional performance in distinguishing early from advanced stages in PDAC, aiding clinical decision-making for patients with this condition.


Assuntos
Carcinoma Ductal Pancreático , Estadiamento de Neoplasias , Nomogramas , Neoplasias Pancreáticas , Tomografia Computadorizada por Raios X , Humanos , Carcinoma Ductal Pancreático/diagnóstico por imagem , Carcinoma Ductal Pancreático/patologia , Masculino , Feminino , Pessoa de Meia-Idade , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/patologia , Idoso , Tomografia Computadorizada por Raios X/métodos , Adulto , Estudos Retrospectivos , Radiômica
2.
ACS Appl Mater Interfaces ; 16(15): 19247-19253, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38591143

RESUMO

Two-dimensional (2D) transitional metal dichalcogenides (TMDs) have garnered significant attention due to their potential for next-generation electronics, which require device scaling. However, the performance of TMD-based field-effect transistors (FETs) is greatly limited by the contact resistance. This study develops an effective strategy to optimize the contact resistance of WSe2 FETs by combining contact doping and 2D metallic electrode materials. The contact regions were doped using a laser, and the metallic TaSe2 flakes were stacked on doped WSe2 as electrodes. Doping the contact areas decreases the depletion width, while introducing the TaSe2 contact results in a lower Schottky barrier. This method significantly improves the electrical performance of the WSe2 FETs. The doped WSe2/TaSe2 contact exhibits an ultralow Schottky barrier height of 65 meV and a contact resistance of 11 kΩ·µm, which is a 50-fold reduction compared to the conventional Cr/Au contact. Our method offers a way on fabricating high-performance 2D FETs.

3.
Adv Sci (Weinh) ; 11(22): e2400275, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38504472

RESUMO

Energy loss in perovskite grain boundaries (GBs) is a primary limitation toward high-efficiency perovskite solar cells (PSCs). Two critical strategies to address this issue are high-quality crystallization and passivation of GBs. However, the established methods are generally carried out discretely due to the complicated mechanisms of grain growth and defect formation. In this study, a combined method is proposed by introducing 3,4,5-Trifluoroaniline iodide (TFAI) into the perovskite precursor. The TFAI triggers the union of nano-sized colloids into microclusters and facilitates the complete phase transition of α-FAPbI3 at room temperature. The controlled chemical reactivity and strong steric hindrance effect enable the fixed location of TFAI and suppress defects at GBs. This combination of well-crystallized perovskite grains and effectively passivated GBs leads to an improvement in the open circuit voltage (Voc) of PSCs from 1.08 V to 1.17 V, which is one of the highest recorded Voc without interface modification. The TFAI-incorporated device achieved a champion PCE of 24.81%. The device maintained a steady power output near its maximum power output point, showing almost no decay over 280 h testing without pre-processing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA