Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Chin J Traumatol ; 24(6): 374-382, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33903003

RESUMO

PURPOSE: Wallerian degeneration (WD) is an antegrade degenerative process distal to peripheral nerve injury. Numerous genes are differentially regulated in response to the process. However, the underlying mechanism is unclear, especially the early response. We aimed at investigating the effects of sciatic nerve injury on WD via CLDN 14/15 interactions in vivo and in vitro. METHODS: Using the methods of molecular biology and bioinformatics analysis, we investigated the molecular mechanism by which claudin 14/15 participate in WD. Our previous study showed that claudins 14 and 15 trigger the early signal flow and pathway in damaged sciatic nerves. Here, we report the effects of the interaction between claudin 14 and claudin 15 on nerve degeneration and regeneration during early WD. RESULTS: It was found that claudin 14/15 were upregulated in the sciatic nerve in WD. Claudin 14/15 promoted Schwann cell proliferation, migration and anti-apoptosis in vitro. PKCα, NT3, NF2, and bFGF were significantly upregulated in transfected Schwann cells. Moreover, the expression levels of the ß-catenin, p-AKT/AKT, p-c-jun/c-jun, and p-ERK/ERK signaling pathways were also significantly altered. CONCLUSION: Claudin 14/15 affect Schwann cell proliferation, migration, and anti-apoptosis via the ß-catenin, p-AKT/AKT, p-c-jun/c-jun, and p-ERK/ERK pathways in vitro and in vivo. The results of this study may help elucidate the molecular mechanisms of the tight junction signaling pathway underlying peripheral nerve degeneration.


Assuntos
Traumatismos dos Nervos Periféricos , Degeneração Walleriana , Animais , Claudinas , Regeneração Nervosa , Ratos , Células de Schwann/patologia , Nervo Isquiático , Degeneração Walleriana/patologia
2.
Small ; 15(41): e1903422, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31448577

RESUMO

Gd chelates have occupied most of the market of magnetic resonance imaging (MRI) contrast agents for decades. However, there have been some problems (nephrotoxicity, non-specificity, and low r1 ) that limit their applications. Herein, a wet-chemical method is proposed for facile synthesis of poly(acrylic acid) (PAA) stabilized exceedingly small gadolinium oxide nanoparticles (ES-GON-PAA) with an excellent water dispersibility and a size smaller than 2.0 nm, which is a powerful T1 -weighted MRI contrast agent for diagnosis of diseases due to its remarkable relaxivities (r1 = 70.2 ± 1.8 mM-1 s-1 , and r2 /r1 = 1.02 ± 0.03, at 1.5 T). The r1 is much higher and the r2 /r1 is lower than that of the commercial Gd chelates and reported gadolinium oxide nanoparticles (GONs). Further ES-GON-PAA is developed with conjugation of RGD2 (RGD dimer) (i.e., ES-GON-PAA@RGD2) for T1 -weighted MRI of tumors that overexpress RGD receptors (i.e., integrin αv ß3 ). The maximum signal enhancement (ΔSNR) for T1 -weighted MRI of tumors reaches up to 372 ± 56% at 2 h post-injection of ES-GON-PAA@RGD2, which is much higher than commercial Gd-chelates (<80%). Due to the high biocompatibility and high tumor accumulation, ES-GON-PAA@RGD2 with remarkable relaxivities is a promising and powerful T1 -weighted MRI contrast agent.


Assuntos
Gadolínio/química , Imageamento por Ressonância Magnética , Nanopartículas/química , Neoplasias/diagnóstico por imagem , Tamanho da Partícula , Resinas Acrílicas/química , Linhagem Celular Tumoral , Humanos , Nanopartículas/ultraestrutura
3.
Chem Rev ; 117(22): 13566-13638, 2017 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-29048884

RESUMO

The complexity, diversity, and heterogeneity of tumors seriously undermine the therapeutic potential of treatment. Therefore, the current trend in clinical research has gradually shifted from a focus on monotherapy to combination therapy for enhanced treatment efficacy. More importantly, the cooperative enhancement interactions between several types of monotherapy contribute to the naissance of multimodal synergistic therapy, which results in remarkable superadditive (namely "1 + 1 > 2") effects, stronger than any single therapy or their theoretical combination. In this review, state-of-the-art studies concerning recent advances in nanotechnology-mediated multimodal synergistic therapy will be systematically discussed, with an emphasis on the construction of multifunctional nanomaterials for realizing bimodal and trimodal synergistic therapy as well as the intensive exploration of the underlying synergistic mechanisms for explaining the significant improvements in synergistic therapeutic outcome. Furthermore, the featured applications of multimodal synergistic therapy in overcoming tumor multidrug resistance, hypoxia, and metastasis will also be discussed in detail, which may provide new ways for the efficient regression and even elimination of drug resistant, hypoxic solid, or distant metastatic tumors. Finally, some design tips for multifunctional nanomaterials and an outlook on the future development of multimodal synergistic therapy will be provided, highlighting key scientific issues and technical challenges and requiring remediation to accelerate clinical translation.


Assuntos
Nanoestruturas/química , Nanotecnologia , Neoplasias/terapia , Antineoplásicos/uso terapêutico , Terapia Genética , Humanos , Imunoterapia , Fototerapia
4.
Chem Soc Rev ; 47(8): 2873-2920, 2018 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-29568836

RESUMO

Exploring and understanding biological and pathological changes are of great significance for early diagnosis and therapy of diseases. Optical sensing and imaging approaches have experienced major progress in this field. Particularly, an emergence of various functional optical nanoprobes has provided enhanced sensitivity, specificity, targeting ability, as well as multiplexing and multimodal capabilities due to improvements in their intrinsic physicochemical and optical properties. However, one of the biggest challenges of conventional optical nanoprobes is their absolute intensity-dependent signal readout, which causes inaccurate sensing and imaging results due to the presence of various analyte-independent factors that can cause fluctuations in their absolute signal intensity. Ratiometric measurements provide built-in self-calibration for signal correction, enabling more sensitive and reliable detection. Optimizing nanoprobe designs with ratiometric strategies can surmount many of the limitations encountered by traditional optical nanoprobes. This review first elaborates upon existing optical nanoprobes that exploit ratiometric measurements for improved sensing and imaging, including fluorescence, surface enhanced Raman scattering (SERS), and photoacoustic nanoprobes. Next, a thorough discussion is provided on design strategies for these nanoprobes, and their potential biomedical applications for targeting specific biomolecule populations (e.g. cancer biomarkers and small molecules with physiological relevance), for imaging the tumor microenvironment (e.g. pH, reactive oxygen species, hypoxia, enzyme and metal ions), as well as for intraoperative image guidance of tumor-resection procedures.


Assuntos
Corantes Fluorescentes/química , Nanoestruturas/química , Animais , Aptâmeros de Nucleotídeos/química , Complexos de Coordenação/química , Complexos de Coordenação/metabolismo , Transferência Ressonante de Energia de Fluorescência , Humanos , Microscopia Confocal , Neoplasias/patologia , Análise Espectral Raman
5.
Bioconjug Chem ; 29(2): 410-419, 2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29254329

RESUMO

Radiolabeled bombesin (BBN) analogs have long been used for developing gastrin-releasing peptide receptor (GRPR) targeted imaging probes, and tracers with excellent in vivo performance including high tumor uptake, high contrast, and favorable pharmacokinetics are highly desired. In this study, we compared the 68Ga-labeled GRPR agonist (Gln-Trp-Ala-Val-Gly-His-Leu-Met-NH2, BBN7-14) and antagonist (d-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2, RM26) for the positron emission tomography (PET) imaging of prostate cancer. The in vitro stabilities, receptor binding, cell uptake, internalization, and efflux properties of the probes 68Ga-1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA)-Aca-BBN7-14 and 68Ga-NOTA-poly(ethylene glycol)3 (PEG3)-RM26 were studied in PC-3 cells, and the in vivo GRPR targeting abilities and kinetics were investigated using PC-3 tumor xenografted mice. BBN7-14, PEG3-RM26, NOTA-Aca-BBN7-14, and NOTA-PEG3-RM26 showed similar binding affinity to GRPR. In PC-3 tumor-bearing mice, the tumor uptake of 68Ga-NOTA-PEG3-RM26 remained at around 3.00 percentage of injected dose per gram of tissue within 1 h after injection, in contrast with 68Ga-NOTA-Aca-BBN7-14, which demonstrated rapid elimination and high background signal. Additionally, the majority of the 68Ga-NOTA-PEG3-RM26 remained intact in mouse serum at 5 min after injection, while almost all of the 68Ga-NOTA-Aca-BBN7-14 was degraded under the same conditions, demonstrating more-favorable in vivo pharmacokinetic properties and metabolic stabilities of the antagonist probe relative to its agonist counterpart. Overall, the antagonistic GRPR targeted probe 68Ga-NOTA-PEG3-RM26 is a more-promising candidate than the agonist 68Ga-NOTA-Aca-BBN7-14 for the PET imaging of prostate cancer patients.


Assuntos
Radioisótopos de Gálio/química , Peptídeos/química , Tomografia por Emissão de Pósitrons/métodos , Próstata/diagnóstico por imagem , Neoplasias da Próstata/diagnóstico por imagem , Receptores da Bombesina/agonistas , Receptores da Bombesina/antagonistas & inibidores , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Feminino , Radioisótopos de Gálio/farmacocinética , Compostos Heterocíclicos/química , Compostos Heterocíclicos/farmacocinética , Compostos Heterocíclicos com 1 Anel , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Peptídeos/farmacocinética
6.
Mol Pharm ; 15(10): 4722-4732, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30138565

RESUMO

Expression of Bcl-2 and Akt-1 has been associated with human cancer. G3139 and RX-0201, targeting Bcl-2 and Akt-1, respectively, are antisense oligonucleotides (ASOs) that have shown limited efficacy in clinical trials. Herein, we report a combination of newly designed ASOs based on these agents and was delivered by tumor cell-targeting lipid nanoparticles (LNPs). A "Gapmer" design strategy was applied to these ASOs with the addition of 2'-O-methyl modifications on the nucleotides at 5' and 3' ends. A dual-channel syringe pump-based system was developed for the synthesis of the LNPs. ASO-LNPs composed of DODMA, egg PC, cholesterol, T7-PEG-DSPE, and PEG-DMG at a molar ratio of 35:39.5:20:0.5:5 and carrying either individual ASOs or co-loaded ASO combinations (Co-ASOs) were synthesized and evaluated in both KB and A549 cancer cells and in an A549 murine xenograft model to determine their antitumor effects and biological activities. The ASO-LNPs exhibited excellent colloidal stability and high ASO encapsulation efficiency with relatively small mean particle sizes and moderately positive zeta potentials. Transferrin receptor-targeting T7-conjugated LNPs showed enhanced cellular uptake compared to nontargeted LNPs. In addition, both T7-conjugated Co-ASOs-LNPs and non-T7-conjugated Co-ASOs-LNPs at a molar ratio of (G3139-GAP to RX-0201-GAP at 1:2) showed efficient downregulation of both Bcl-2 and Akt-1 in both A549 and KB cells. Furthermore, T7-conjugated Co-ASOs-LNPs (Co-ASOs-LNPs) produced superior antitumor activity, prolonged the overall survival time, and demonstrated tumor targeting activity in an A549 xenograft model.


Assuntos
Neoplasias Pulmonares/metabolismo , Nanopartículas/química , Oligonucleotídeos Antissenso/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Neoplasias do Colo do Útero/metabolismo , Células A549 , Animais , Sistemas de Liberação de Medicamentos/métodos , Feminino , Humanos , Lipídeos/química , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Antissenso/uso terapêutico , Neoplasias do Colo do Útero/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Angew Chem Int Ed Engl ; 57(28): 8383-8394, 2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29517844

RESUMO

Featuring high biocompatibility, the emerging field of gas therapy has attracted extensive attention in the medical and scientific communities. Currently, considerable research has focused on the gasotransmitter nitric oxide (NO) owing to its unparalleled dual roles in directly killing cancer cells at high concentrations and cooperatively sensitizing cancer cells to other treatments for synergistic therapy. Of particular note, recent state-of-the-art studies have turned our attention to the chemical design of various endogenous/exogenous stimuli-responsive NO-releasing nanomedicines and their biomedical applications for on-demand NO-sensitized synergistic cancer therapy, which are discussed in this Minireview. Moreover, the potential challenges regarding NO gas therapy are also described, aiming to advance the development of NO nanomedicines as well as usher in new frontiers in this fertile research area.


Assuntos
Neoplasias/terapia , Óxido Nítrico/metabolismo , Gases/química , Gases/metabolismo , Humanos , Nanomedicina , Neoplasias/metabolismo
8.
J Am Chem Soc ; 138(45): 15027-15034, 2016 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-27775895

RESUMO

Molecular design of biomaterials with unique features recapitulating nature's niche to influence biological activities has been a prolific area of investigation in chemistry and material science. The extracellular matrix (ECM) provides a wealth of bioactive molecules in supporting cell proliferation, migration, and differentiation. The well-patterned fibril and intertwining architecture of the ECM profoundly influences cell behavior and development. Inspired by those features from the ECM, we attempted to integrate essential biological factors from the ECM to design bioactive molecules to construct artificial self-supportive ECM mimics to advance stem cell culture. The synthesized biomimic molecules are able to hierarchically self-assemble into nanofibril hydrogels in physiological buffer driven by cooperative effects of electrostatic interaction, van der Waals forces, and intermolecular hydrogen bonds. In addition, the hydrogel is designed to be degradable during cell culture, generating extra space to facilitate cell migration, expansion, and differentiation. We exploited the bioactive hydrogel as a growth-factor-free scaffold to support and accelerate neural stem cell adhesion, proliferation, and differentiation into functional neurons. Our study is a successful attempt to entirely use bioactive molecules for bottom-up self-assembly of new biomaterials mimicking the ECM to directly impact cell behaviors. Our strategy provides a new avenue in biomaterial design to advance tissue engineering and cell delivery.


Assuntos
Nanofibras/química , Células-Tronco Neurais/citologia , Tensoativos/síntese química , Diferenciação Celular , Sobrevivência Celular , Células Cultivadas , Humanos , Substâncias Macromoleculares/química , Estrutura Molecular , Tensoativos/química
9.
Mol Pharm ; 13(7): 2555-62, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27253378

RESUMO

Lipid-albumin nanoparticles (LAN) were synthesized for delivery of RX-0047, an antisense oligonucleotide (ASO) against the hypoxia inducible factor-1 alpha (HIF-1α) to solid tumor. These lipid nanoparticles (LNs) incorporated a human serum albumin-pentaethylenehexamine (HSA-PEHA) conjugate, which is cationic and can form electrostatic complexes with negatively charged oligonucleotides. The delivery efficiency of LAN-RX-0047 was investigated in KB cells and a KB murine xenograft model. When KB cells were treated with LAN-RX-0047, significant HIF-1α downregulation and enhanced cellular uptake were observed compared to LN-RX-0047. LN-RX-0047 and LAN-RX-0047 showed similar cytotoxicity against KB cells with IC50 values of 19.3 ± 3.8 and 20.1 ± 4.2 µM, respectively. LAN-RX-0047 was shown to be taken up by the cells via the macropinocytosis and caveolae-mediated endocytosis pathways while LN-RX-0047 was taken up by cells via caveolae-mediated endocytosis. In the KB xenograft tumor model, LAN-RX-0047 exhibited tumor suppressive activity and significantly reduced intratumoral HIF-1α expression compared to LN-RX-0047. Furthermore, LAN-RX-0047 greatly increased survival time of mice bearing KB-1 xenograft tumors at doses of either 3 mg/kg or 16 mg/kg. These results indicated that LAN-RX-0047 is a highly effective vehicle for therapeutic delivery of antisense agents to tumor.


Assuntos
Portadores de Fármacos/química , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Lipídeos/química , Nanopartículas/química , Oligonucleotídeos Antissenso/química , Oligonucleotídeos/química , Oligonucleotídeos/uso terapêutico , Albuminas , Animais , Western Blotting , Linhagem Celular Tumoral , Portadores de Fármacos/administração & dosagem , Células HeLa , Humanos , Camundongos , Camundongos Nus , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Mol Pharm ; 13(2): 653-62, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26741162

RESUMO

MicroRNA-21 (miR-21) is an oncomiR that is frequently upregulated in human cancers. AntimiR-21 (AM-21) is an oligonucleotide complementary to miR-21 that is designed to inhibit its gene silencing activities. To facilitate efficient delivery of AM-21, a novel lipid nanoparticle formulation called QTsome, based on a combination of quaternary amine and tertiary amine cationic lipids, with a distinctive pH-responsive profile, was developed. QTsome/AM-21 comprising DODMA/DOTAP/DOPC/CHOL/mPEG-DPPE and AM-21 oligonucleotide exhibited a mean particle diameter of below 150 nm, moderate zeta potential (+13.2 mV), excellent colloidal stability, and high drug loading efficiency (above 80%). In vitro study showed QTsome/AM-21 induced upregulation of miR-21 targets, including PTEN and DDAH1, in A549 cells while increasing their sensitivity toward paclitaxel (PTX). Finally, tumor regression, prolonged survival, and miR-21 target upregulation were demonstrated in an A549 xenograft mouse model. These data suggest that QTsome/AM-21 warrants further evaluation as an anticancer agent.


Assuntos
Aminas/química , Cátions/química , Sistemas de Liberação de Medicamentos , Lipídeos/química , Neoplasias Pulmonares/terapia , MicroRNAs/antagonistas & inibidores , Nanopartículas/administração & dosagem , Animais , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Western Blotting , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Terapia Combinada , Feminino , Humanos , Técnicas Imunoenzimáticas , Lipossomos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , MicroRNAs/genética , Nanopartículas/química , Paclitaxel/farmacologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Nanomedicine ; 12(7): 1827-1831, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27033464

RESUMO

Peripheral vasculopathies cause severe wound hypoxia inducing the hypoxamiR miR-210. High level of miR-210, persisting in wound-edge tissue as ischemic memory, suppresses oxidative metabolism and inhibits cell proliferation necessary for healing. In wound-edge tissue of chronic wound patients, elevated miR-210 was tightly associated with inhibition of epidermal cell proliferation as evident by lowered Ki67 immunoreactivity. To inhibit miR-210 in murine ischemic wound-edge tissue, we report the formulation of antihypoxamiR functionalized gramicidin lipid nanoparticles (AFGLN). A single intradermal delivery of AFGLN encapsulating LNA-conjugated anti-hypoximiR-210 (AFGLNmiR-210) lowered miR-210 level in the ischemic wound-edge tissue. In repTOP™mitoIRE mice, AFGLNmiR-210 rescued keratinocyte proliferation as visualized by in vivo imaging system (IVIS). 31P NMR studies showed elevated ATP content at the ischemic wound-edge tissue following AFGLNmiR-210 treatment indicating recovering bioenergetics necessary for healing. Consistently, AFGLNmiR-210 improved ischemic wound closure. The nanoparticle based approach reported herein is effective for miR-directed wound therapeutics warranting further translational development.


Assuntos
Antibacterianos/administração & dosagem , Gramicidina/administração & dosagem , Nanopartículas , Cicatrização , Animais , Humanos , Isquemia/metabolismo , Queratinócitos , Lipídeos , Camundongos , MicroRNAs
12.
Mol Pharm ; 12(6): 2010-8, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25871632

RESUMO

CD33-targeted lipid nanoparticles (aCD33LNs) were synthesized for delivery of GTI-2040, an antisense oligonucleotide (ASO) against the R2 subunit of ribonucleotide reductase, to acute myelogenous leukemia (AML). These LNs incorporated a deoxycholate-polyethylenimine (DOC-PEI) conjugate, which has shown significant activity to facilitate oligonucleotide delivery. Anti-CD33 scFv (aCD33) was added as a targeting ligand. The delivery efficiency of this system was investigated both in vitro and in vivo. When cells were treated with aCD33LN/GTI-2040, significant uptake was observed in CD33 positive Kasumi-1 cells. aCD33LNs loaded with GTI-2040 induced significant down-regulation of R2 mRNA and protein levels in AML cells. Moreover, aCD33LN/GTI-2040 showed a 15-fold reduction in the IC50 of antileukemic drug Ara-C in Kasumi-1 cells. In Kasumi-1 xenograft model, aCD33LN/GTI-2040 showed significant R2 downregulation compared to LN/GTI-2040. Furthermore, aCD33LN/GTI-2040 coadministered with Ara-C was shown to be highly effective in tumor growth inhibition and to greatly increase survival time of mice bearing Kasumi-1 xenograft tumors. The conjugate DOC-PEI has shown an ability to include calcein release from lipid nanoparticles, suggesting a potential mechanism contributing to efficient endosome release by DOC-PEI2K. These results indicate that aCD33LNs are a highly effective vehicle for the therapeutic delivery of antisense agents to AML.


Assuntos
Leucemia Mieloide Aguda/tratamento farmacológico , Lipídeos/química , Nanopartículas/química , Oligodesoxirribonucleotídeos/uso terapêutico , Oligonucleotídeos Antissenso/química , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Lipossomos/química , Camundongos , Oligodesoxirribonucleotídeos/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Nanomedicine ; 9(1): 122-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22542825

RESUMO

Human serum albumin (HSA)-coated lipid nanoparticles (HSA-LNPs) loaded with phrGFP-targeted siRNA (HSA-LNPs-siRNA) were prepared and evaluated for gene downregulation effect in phrGFP-transfected breast cancer cells and the corresponding xenograft tumor model. HSA-LNPs-siRNA were successfully prepared with a particle size of 79.5±5.5 nm. In phrGFP-transfected MCF-7 cells, HSA-LNPs-siRNA significantly decreased cell fluorescence even in the presence of fetal bovine serum (FBS). Moreover, cell fluorescence and phrGFP mRNA expression were significantly downregulated by HSA-LNPs-siRNA in phrGFP-transfected MCF-7, MDA-MB-231, and SK-BR-3 cells in comparison with control or HSA-LNPs-siRNA (scrambled). In phrGFP-transfected MCF-7 xenograft tumor model, tumor fluorescence was significantly decreased after three IV administrations of HSA-LNPs-siRNA at a dose of 3 mg/kg in comparison with siRNA alone. HSA-LNPs-siRNA demonstrated a superior pharmacokinetic profile in comparison with siRNA at a dose of 1mg/kg. These results show that the novel nonviral carrier, HSA-LNPs, may be used for the delivery of siRNA to breast cancer cells. FROM THE CLINICAL EDITOR: Targeted delivery of siRNA to cancer cells may be a viable anti-cancer strategy with low toxicity. In this study the novel nonviral carrier, human serum albumin-coated lipid nanoparticles (HSA-LNP) were demonstrated as an efficient delivery agent of siRNA to breast cancer cells.


Assuntos
Neoplasias da Mama/genética , Metabolismo dos Lipídeos , Nanopartículas , RNA Interferente Pequeno/genética , Albumina Sérica/metabolismo , Sequência de Bases , Neoplasias da Mama/metabolismo , Primers do DNA , Feminino , Humanos , Células MCF-7
14.
Pharmaceutics ; 15(12)2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38140015

RESUMO

Bortezomib (BTZ), a boronic acid-derived proteasome inhibitor, is commonly employed in treating multiple myeloma (MM). However, the applications of BTZ are limited due to its poor stability and low bioavailability. Herein, we develop an optimized liposomal formulation of BTZ (L-BTZ) by employing a remote-loading strategy. This formulation uses Tiron, a divalent anionic catechol derivative, as the internal complexing agent. Compared to earlier BTZ-related formulations, this alternative formulation showed significantly greater stability due to the Tiron-BTZ complex's higher pH stability and negative charges, compared to the meglumine-BTZ complex. Significantly, the plasma AUC of L-BTZ was found to be 30 times greater than that of free BTZ, suggesting an extended blood circulation duration. In subsequent therapeutic evaluations using two murine xenograft tumor models of MM, the NCI-H929 and OPM2 models showed tumor growth inhibition (TGI) values of 37% and 57%, respectively. In contrast, free BTZ demonstrated TGI values of 17% and 11% in these models. Further, L-BTZ presented enhanced antitumor efficacy in the Hepa1-6 HCC syngeneic model, indicating its potential broader applicability as an antineoplastic agent. These findings suggest that the optimized L-BTZ formulation offers a significant advancement in BTZ delivery, holding substantial promise for clinical investigation in not merely MM, but other cancer types.

15.
Pharm Res ; 29(6): 1627-1636, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22274556

RESUMO

PURPOSE: Delivery of siRNA into cells remains a critical challenge. Our lab has shown a novel polyamidoamine (PAMAM) dendrimer with modified pentaerythritol derivative core (PD dendrimer) to exhibit high plasmid DNA transfection efficiency and low cytotoxicity. Here, we evaluate PD dendrimer as a siRNA carrier. METHODS: Agarose gel electrophoresis and AFM were used to confirm formation of generation 5 (G5)-PD dendrimer/siRNA nanoparticles (NPs). G5 PD dendrimer/anti-luciferase siRNA NPs were used to transfect SK Hep-1 cells with stable luciferase expression. Effects of various endocytic pathway inhibitors on uptake of G5 PD dendrimer/siRNA NPs in SK Hep-1 cells were also investigated. RESULTS: Agarose gel electrophoresis indicated that G5 PD dendrimer and siRNA formed NPs at weight ratios >0.5:1. G5 PD dendrimer showed effective luciferase gene silencing when weight ratio was 3.0:1 and above. Treatment with endocytosis inhibitors showed that clathrin-mediated endocytosis was the main endocytic pathway by which G5-PD dendrimer/siRNA NPs enter the cell. CONCLUSIONS: These results show that the novel G5 PD dendrimer has high siRNA delivery activity and is promising as a delivery agent for its therapeutic application.


Assuntos
Dendrímeros/química , Propilenoglicóis/química , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Transfecção/métodos , Linhagem Celular Tumoral , Clatrina/metabolismo , Citocalasina D/farmacologia , Dendrímeros/toxicidade , Eletroforese em Gel de Ágar , Endocitose/efeitos dos fármacos , Genes Reporter , Humanos , Luciferases/biossíntese , Luciferases/genética , Microdomínios da Membrana/efeitos dos fármacos , Microdomínios da Membrana/metabolismo , Microscopia de Força Atômica , Nanopartículas , Propilenoglicóis/toxicidade , RNA Interferente Pequeno/química , Sacarose/farmacologia
16.
Neural Regen Res ; 17(4): 845-853, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34472485

RESUMO

Wallerian degeneration is a complex biological process that occurs after nerve injury, and involves nerve degeneration and regeneration. Schwann cells play a crucial role in the cellular and molecular events of Wallerian degeneration of the peripheral nervous system. However, Wallerian degeneration regulating nerve injury and repair remains largely unknown, especially the early response. We have previously reported some key regulators of Wallerian degeneration after sciatic nerve injury. Baculoviral inhibitor of apoptosis protein repeat-containing protein 3 (BIRC3) is an important factor that regulates apoptosis-inhibiting protein. In this study, we established rat models of right sciatic nerve injury. In vitro Schwann cell models were also established and subjected to gene transfection to inhibit and overexpress BIRC3. The data indicated that BIRC3 expression was significantly up-regulated after sciatic nerve injury. Both BIRC3 upregulation and downregulation affected the migration, proliferation and apoptosis of Schwan cells and affected the expression of related factors through activating c-fos and ERK signal pathway. Inhibition of BIRC3 delayed early Wallerian degeneration through inhibiting the apoptosis of Schwann cells after sciatic nerve injury. These findings suggest that BIRC3 plays an important role in peripheral nerve injury repair and regeneration. The study was approved by the Institutional Animal Care and Use Committee of Nantong University, China (approval No. 2019-nsfc004) on March 1, 2019.

17.
Dev Neurobiol ; 82(1): 98-111, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34818452

RESUMO

Hundreds of millions of people worldwide suffer from peripheral nerve damage resulting from car accidents, falls, industrial accidents, residential accidents, and wars. The purpose of our study was to further investigate the effects of Wallerian degeneration (WD) after rat sciatic nerve injury and to screen for critical long noncoding RNAs (lncRNAs) in WD. We found H19 to be essential for nerve degeneration and regeneration and to be highly expressed in the sciatic nerves of rats with WD. lncRNA H19 potentially impaired the recovery of sciatic nerve function in rats. H19 was mainly localized in the cytoplasm of Schwann cells (SCs) and promoted their migration. H19 promoted the apoptosis of dorsal root ganglion (DRG) neurons and slowed the growth of DRG axons. The lncRNA H19 may play a role in WD through the Wnt/ß-catenin signaling pathway and is coexpressed with a variety of crucial mRNAs during WD. These data provide further insight into the molecular mechanisms of WD.


Assuntos
Degeneração Neural , Regeneração Nervosa , Traumatismos dos Nervos Periféricos , RNA Longo não Codificante , Animais , Degeneração Neural/patologia , Regeneração Nervosa/fisiologia , Traumatismos dos Nervos Periféricos/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Ratos , Ratos Sprague-Dawley , Células de Schwann , Nervo Isquiático/lesões , Nervo Isquiático/metabolismo , Degeneração Walleriana/metabolismo
18.
Drug Discov Today ; 27(5): 1236-1250, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34971818

RESUMO

The use of expedited approval pathways for anticancer drug development, which provide the advantages of high efficiency and cost-effectiveness, has expanded significantly in recent years. During the past decade, a total of 410 new molecular entities have been approved by the US Food and Drug Administration (FDA), with a steady growth of 6.5% in the US. In Europe, 9-75% of approved anticancer drugs were granted at least one expedited approval program. Various expedited pathways have also been implemented worldwide to address underrepresented medical needs rapidly. China has adapted several expedited approval programs, including breakthrough therapy designation, priority review, and conditional approval, to keep up with the growth in pharmaceutical development. It is expected that worldwide standards for drug approval will become more standardized in the next decade.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/uso terapêutico , Aprovação de Drogas , Desenvolvimento de Medicamentos , Neoplasias/tratamento farmacológico , Produção de Droga sem Interesse Comercial , Estados Unidos , United States Food and Drug Administration
19.
Nanoscale Horiz ; 4(2): 426-433, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31565239

RESUMO

A Pt prodrug polyphenol and gadolinium ion loaded cancer theranostics nanoplatform based on mild acidic pH and thermal sensitive polymer was designed for photoacoustic (PA)/ magnetic resonance(MR)/ positron emission tomography (PET) multimodal imaging-guided chemo-photothermal combination therapy. The Pt drug release can be controlled by tumour-specific acidic pH and heat generated by external NIR irradiation. The nanoparticles were stable under normal physiological environment and released the drug under tumour acidic pH and NIR laser irradiation, which can reduce the side effect of drug to normal organs. Moreover, the MR signal can be significantly enhanced (~3-fold increase in T1 relaxivity) under the acidic tumour microenvironment, which is favorable for cancer diagnosis. The nanoparticles exhibited excellent tumour accumulation and led to complete tumour eradication with low power NIR laser irradiation. This promising approach provides a new avenue for imaging-guided combination therapy.

20.
J Extracell Vesicles ; 8(1): 1597603, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31258878

RESUMO

Biological nanoparticles, including viruses and extracellular vesicles (EVs), are of interest to many fields of medicine as biomarkers and mediators of or treatments for disease. However, exosomes and small viruses fall below the detection limits of conventional flow cytometers due to the overlap of particle-associated scattered light signals with the detection of background instrument noise from diffusely scattered light. To identify, sort, and study distinct subsets of EVs and other nanoparticles, as individual particles, we developed nanoscale Fluorescence Analysis and Cytometric Sorting (nanoFACS) methods to maximise information and material that can be obtained with high speed, high resolution flow cytometers. This nanoFACS method requires analysis of the instrument background noise (herein defined as the "reference noise"). With these methods, we demonstrate detection of tumour cell-derived EVs with specific tumour antigens using both fluorescence and scattered light parameters. We further validated the performance of nanoFACS by sorting two distinct HIV strains to >95% purity and confirmed the viability (infectivity) and molecular specificity (specific cell tropism) of biological nanomaterials sorted with nanoFACS. This nanoFACS method provides a unique way to analyse and sort functional EV- and viral-subsets with preservation of vesicular structure, surface protein specificity and RNA cargo activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA