Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Small ; 9(24): 4123-9, 2013 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-23873826

RESUMO

A 3-step glioblastoma-tropic delivery and therapy method using nanoparticle programmed self-destructive neural stem cells (NSCs) is demonstrated in vivo: 1) FDA-approved NSCs for clinical trials are loaded with pH-sensitive MSN-Dox; 2) the nanoparticle conjugates provide a delayed drug-releasing mechanism and allow for NSC migration towards a distant tumor site; 3) NSCs eventually undergo cell death and release impregnated MSN-Dox, which subsequently induces toxicity towards surrounding glioma cells.


Assuntos
Neoplasias Encefálicas/terapia , Glioblastoma/terapia , Nanopartículas/química , Células-Tronco Neurais/citologia , Animais , Apoptose , Morte Celular , Linhagem Celular Tumoral , Movimento Celular , Ensaios Clínicos como Assunto , Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos , Humanos , Concentração de Íons de Hidrogênio , Lisossomos , Camundongos , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Nanomedicina , Transplante de Neoplasias , Células-Tronco Neurais/ultraestrutura
2.
J Natl Cancer Inst ; 105(13): 968-77, 2013 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-23821758

RESUMO

BACKGROUND: Oncolytic adenoviral virotherapy (OV) is a highly promising approach for the treatment of glioblastoma multiforme (GBM). In practice, however, the approach is limited by poor viral distribution and spread throughout the tumor mass. METHODS: To enhance viral delivery, replication, and spread, we used a US Food and Drug Administration-approved neural stem cell line (NSC), HB1.F3.CD, which is currently employed in human clinical trials. HB1.F3.CD cells were loaded with an oncolytic adenovirus, CRAd-Survivin-pk7, and mice bearing various human-derived GBMs were assessed with regard to NSC migration, viral replication, and therapeutic efficacy. Survival curves were evaluated with Kaplan-Meier methods. All statistical tests were two-sided. RESULTS: Antiglioma activity of OV-loaded HB1.F3.CD cells was effective against clinically relevant human-derived glioma models as well as a glioma stem cell-enriched xenograft model. Median survival was prolonged by 34% to 50% compared with mice treated with OV alone (GBM43FL model median survival = 19.5 days, OV alone vs NSC + OV, hazard ratio of survival = 2.26, 95% confidence interval [CI] = 1.21 to 12.23, P = .02; GBM12 model median survival = 43.5 days, OV alone vs NSC + OV, hazard ratio of survival = 2.53, 95% CI = 1.21 to 10.38, P = .02). OV-loaded HB1.F3.CD cells were shown to effectively migrate to the contralateral hemisphere and hand off the therapeutic payload of OV to targeted glioma cells. In vivo distribution and migratory kinetics of the OV-loaded HB1.F3.CD cells were successfully monitored in real time by magnetic resonance imaging. OV-loaded NSCs retained their differentiation fate and were nontumorigenic in vivo. CONCLUSIONS: HB1.F3.CD NSCs loaded with CRAd-Survivin-pk7 overcome major limitations of OV in vivo and warrant translation in a phase I human clinical trial for patients with GBM.


Assuntos
Neoplasias Encefálicas/terapia , Glioblastoma/terapia , Terapia de Alvo Molecular/métodos , Células-Tronco Neurais/transplante , Terapia Viral Oncolítica/métodos , Transplante de Células-Tronco/métodos , Adenoviridae , Animais , Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA