Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Nature ; 617(7962): 747-754, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37165189

RESUMO

While early multicellular lineages necessarily started out as relatively simple groups of cells, little is known about how they became Darwinian entities capable of sustained multicellular evolution1-3. Here we investigate this with a multicellularity long-term evolution experiment, selecting for larger group size in the snowflake yeast (Saccharomyces cerevisiae) model system. Given the historical importance of oxygen limitation4, our ongoing experiment consists of three metabolic treatments5-anaerobic, obligately aerobic and mixotrophic yeast. After 600 rounds of selection, snowflake yeast in the anaerobic treatment group evolved to be macroscopic, becoming around 2 × 104 times larger (approximately mm scale) and about 104-fold more biophysically tough, while retaining a clonal multicellular life cycle. This occurred through biophysical adaptation-evolution of increasingly elongate cells that initially reduced the strain of cellular packing and then facilitated branch entanglements that enabled groups of cells to stay together even after many cellular bonds fracture. By contrast, snowflake yeast competing for low oxygen5 remained microscopic, evolving to be only around sixfold larger, underscoring the critical role of oxygen levels in the evolution of multicellular size. Together, this research provides unique insights into an ongoing evolutionary transition in individuality, showing how simple groups of cells overcome fundamental biophysical limitations through gradual, yet sustained, multicellular evolution.


Assuntos
Aclimatação , Evolução Biológica , Agregação Celular , Saccharomyces cerevisiae , Modelos Biológicos , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Anaerobiose , Aerobiose , Oxigênio/análise , Oxigênio/metabolismo , Forma Celular , Agregação Celular/fisiologia
2.
Proc Natl Acad Sci U S A ; 120(11): e2214211120, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36881625

RESUMO

During the biofilm life cycle, bacteria attach to a surface and then reproduce, forming crowded, growing communities. Many theoretical models of biofilm growth dynamics have been proposed; however, difficulties in accurately measuring biofilm height across relevant time and length scales have prevented testing these models, or their biophysical underpinnings, empirically. Using white light interferometry, we measure the heights of microbial colonies with nanometer precision from inoculation to their final equilibrium height, producing a detailed empirical characterization of vertical growth dynamics. We propose a heuristic model for vertical growth dynamics based on basic biophysical processes inside a biofilm: diffusion and consumption of nutrients and growth and decay of the colony. This model captures the vertical growth dynamics from short to long time scales (10 min to 14 d) of diverse microorganisms, including bacteria and fungi.


Assuntos
Biofilmes , Heurística , Biofísica , Difusão , Interferometria
3.
PLoS Comput Biol ; 20(1): e1011807, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38277405

RESUMO

Surface attached communities of microbes grow in a wide variety of environments. Often, the size of these microbial community is constrained by their physical surroundings. However, little is known about how size constraints of a colony impact the outcome of microbial competitions. Here, we use individual-based models to simulate contact killing between two bacterial strains with different killing rates in a wide range of community sizes. We found that community size has a substantial impact on outcomes; in fact, in some competitions the identity of the most fit strain differs in large and small environments. Specifically, when at a numerical disadvantage, the strain with the slow killing rate is more successful in smaller environments than in large environments. The improved performance in small spaces comes from finite size effects; stochastic fluctuations in the initial relative abundance of each strain in small environments lead to dramatically different outcomes. However, when the slow killing strain has a numerical advantage, it performs better in large spaces than in small spaces, where stochastic fluctuations now aid the fast killing strain in small communities. Finally, we experimentally validate these results by confining contact killing strains of Vibrio cholerae in transmission electron microscopy grids. The outcomes of these experiments are consistent with our simulations. When rare, the slow killing strain does better in small environments; when common, the slow killing strain does better in large environments. Together, this work demonstrates that finite size effects can substantially modify antagonistic competitions, suggesting that colony size may, at least in part, subvert the microbial arms race.


Assuntos
Microbiota , Vibrio cholerae
4.
Soft Matter ; 18(25): 4660-4666, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35543353

RESUMO

Shape-changing objects are prized for applications ranging from acoustics to robotics. We report sub-millimetre bubbles that reversibly and rapidly change not only their shape but also their topological class, from sphere to torus, when subjected to a simple pressure treatment. Stabilized by a solid-like film of nanoscopic protein "particles", the bubbles may persist in toroidal form for several days, most of them with the relative dimensions expected of Clifford tori. The ability to cross topological classes reversibly and quickly is enabled by the expulsion of protein from the strained surfaces in the form of submicron assemblies. Compared to structural modifications of liquid-filled vesicles, for example by slow changes in solution osmolality, the rapid inducement of shape changes in bubbles by application of pressure may hasten experimental investigations of surface mechanics, even as it suggests new routes to lightweight materials with high surface areas.


Assuntos
Pressão , Propriedades de Superfície
5.
Proc Natl Acad Sci U S A ; 116(8): 2875-2880, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30723149

RESUMO

Structural hierarchy, in which materials possess distinct features on multiple length scales, is ubiquitous in nature. Diverse biological materials, such as bone, cellulose, and muscle, have as many as 10 hierarchical levels. Structural hierarchy confers many mechanical advantages, including improved toughness and economy of material. However, it also presents a problem: Each hierarchical level adds a new source of assembly errors and substantially increases the information required for proper assembly. This seems to conflict with the prevalence of naturally occurring hierarchical structures, suggesting that a common mechanical source of hierarchical robustness may exist. However, our ability to identify such a unifying phenomenon is limited by the lack of a general mechanical framework for structures exhibiting organization on disparate length scales. Here, we use simulations to substantiate a generalized model for the tensile stiffness of hierarchical filamentous networks with a nested, dilute triangular lattice structure. Following seminal work by Maxwell and others on criteria for stiff frames, we extend the concept of connectivity in network mechanics and find a similar dependence of material stiffness upon each hierarchical level. Using this model, we find that stiffness becomes less sensitive to errors in assembly with additional levels of hierarchy; although surprising, we show that this result is analytically predictable from first principles and thus potentially model independent. More broadly, this work helps account for the success of hierarchical, filamentous materials in biology and materials design and offers a heuristic for ensuring that desired material properties are achieved within the required tolerance.


Assuntos
Simulação por Computador , Músculos/ultraestrutura , Resistência à Tração , Osso e Ossos/química , Osso e Ossos/ultraestrutura , Celulose/química , Celulose/ultraestrutura , Músculos/química , Estresse Mecânico
6.
Proc Natl Acad Sci U S A ; 113(3): 608-13, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26721399

RESUMO

Single-span membrane proteins (ssMPs) represent approximately one-half of all membrane proteins and play important roles in cellular communications. However, like all membrane proteins, ssMPs are prone to misfolding and aggregation because of the hydrophobicity of transmembrane helices, making them difficult to study using common aqueous solution-based approaches. Detergents and membrane mimetics can solubilize membrane proteins but do not always result in proper folding and functionality. Here, we use cell-free protein synthesis in the presence of oil drops to create a one-pot system for the synthesis, assembly, and display of functional ssMPs. Our studies suggest that oil drops prevent aggregation of some in vitro-synthesized ssMPs by allowing these ssMPs to localize on oil surfaces. We speculate that oil drops may provide a hydrophobic interior for cotranslational insertion of the transmembrane helices and a fluidic surface for proper assembly and display of the ectodomains. These functionalized oil drop surfaces could mimic cell surfaces and allow ssMPs to interact with cell surface receptors under an environment closest to cell-cell communication. Using this approach, we showed that apoptosis-inducing human transmembrane proteins, FasL and TRAIL, synthesized and displayed on oil drops induce apoptosis of cultured tumor cells. In addition, we take advantage of hydrophobic interactions of transmembrane helices to manipulate the assembly of ssMPs and create artificial clusters on oil drop surfaces. Thus, by coupling protein synthesis with self-assembly at the water-oil interface, we create a platform that can use recombinant ssMPs to communicate with cells.


Assuntos
Bioquímica/métodos , Proteínas de Membrana/síntese química , Óleos/química , Água/química , Apoptose , Eletroforese em Gel de Poliacrilamida , Proteína Ligante Fas/metabolismo , Fluorescência , Proteínas de Fluorescência Verde/metabolismo , Humanos , Células Jurkat , Ligante Indutor de Apoptose Relacionado a TNF/síntese química
7.
Phys Rev Lett ; 120(1): 018101, 2018 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-29350941

RESUMO

Unlike equilibrium atomic solids, biofilms-soft solids composed of bacterial cells-do not experience significant thermal fluctuations at the constituent level. However, living cells stochastically reproduce and die, provoking a mechanical response. We investigate the mechanical consequences of cellular death and reproduction by measuring surface-height fluctuations of biofilms containing two mutually antagonistic strains of Vibrio cholerae that kill one another on contact via the type VI secretion system. While studies of active matter typically focus on activity via constituent mobility, here, activity is mediated by reproduction and death events in otherwise immobilized cells. Biofilm surface topography is measured in the nearly homeostatic limit via white light interferometry. Although biofilms are far from equilibrium systems, measured surface-height fluctuation spectra resemble the spectra of thermal permeable membranes but with an activity-mediated effective temperature, as predicted by Risler, Peilloux, and Prost [Phys. Rev. Lett. 115, 258104 (2015)PRLTAO0031-900710.1103/PhysRevLett.115.258104]. By comparing the activity of killer strains of V. cholerae with that of genetically modified strains that cannot kill each other and validating with individual-based simulations, we demonstrate that extracted effective temperatures increase with the amount of death and reproduction and that death and reproduction can fluidize biofilms. Together, these observations demonstrate the unique physical consequences of activity mediated by death and reproduction events.


Assuntos
Biofilmes , Vibrio cholerae , Proteínas de Bactérias , Morte Celular , Regulação Bacteriana da Expressão Gênica , Vibrio cholerae/crescimento & desenvolvimento , Vibrio cholerae/fisiologia
8.
Nature ; 476(7360): 308-11, 2011 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-21850105

RESUMO

When a drop of liquid dries on a solid surface, its suspended particulate matter is deposited in ring-like fashion. This phenomenon, known as the coffee-ring effect, is familiar to anyone who has observed a drop of coffee dry. During the drying process, drop edges become pinned to the substrate, and capillary flow outward from the centre of the drop brings suspended particles to the edge as evaporation proceeds. After evaporation, suspended particles are left highly concentrated along the original drop edge. The coffee-ring effect is manifested in systems with diverse constituents, ranging from large colloids to nanoparticles and individual molecules. In fact--despite the many practical applications for uniform coatings in printing, biology and complex assembly-the ubiquitous nature of the effect has made it difficult to avoid. Here we show experimentally that the shape of the suspended particles is important and can be used to eliminate the coffee-ring effect: ellipsoidal particles are deposited uniformly during evaporation. The anisotropic shape of the particles significantly deforms interfaces, producing strong interparticle capillary interactions. Thus, after the ellipsoids are carried to the air-water interface by the same outward flow that causes the coffee-ring effect for spheres, strong long-ranged interparticle attractions between ellipsoids lead to the formation of loosely packed or arrested structures on the air-water interface. These structures prevent the suspended particles from reaching the drop edge and ensure uniform deposition. Interestingly, under appropriate conditions, suspensions of spheres mixed with a small number of ellipsoids also produce uniform deposition. Thus, particle shape provides a convenient parameter to control the deposition of particles, without modification of particle or solvent chemistry.


Assuntos
Café/química , Tamanho da Partícula , Material Particulado/análise , Material Particulado/química , Ar , Coloides/análise , Coloides/química , Cinética , Solventes/química , Tensão Superficial , Tensoativos/química , Volatilização , Água/química
9.
Langmuir ; 32(49): 13137-13148, 2016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-27951711

RESUMO

Liquid crystals can organize dispersed particles into useful and exotic structures. In the case of lyotropic cholesteric polypeptide liquid crystals, polypeptide-coated particles are appealing because the surface chemistry matches that of the polymeric mesogen, which permits a tighter focus on factors such as extended particle shape. The colloidal particles developed here consist of a magnetic and fluorescent cylindrically symmetric silica core with one rounded, almost hemispherical end. Functionalized with helical poly(γ-stearyl-l-glutamate) (PSLG), the particles were dispersed at different concentrations in cholesteric liquid crystals (ChLC) of the same polymer in tetrahydrofuran (THF). Defects introduced by the particles to the director field of the bulk PSLG/THF host led to a variety of phases. In fresh mixtures, the cholesteric mesophase of the PSLG matrix was distorted, as reflected in the absence of the characteristic fingerprint pattern. Over time, the fingerprint pattern returned, more quickly when the concentration of the PSLG-coated particles was low. At low particle concentration the particles were "guided" by the PSLG liquid crystal to organize into patterns similar to that of the re-formed bulk chiral nematic phase. When their concentration increased, the well-dispersed PSLG-coated particles seemed to map onto the distortions in the bulk host's local director field. The particles located near the glass vial-ChLC interfaces were stacked lengthwise into architectures with apparent two-dimensional hexagonal symmetry. The size of these "crystalline" structures increased with particle concentration. They displayed remarkable stability toward an external magnetic field; hydrophobic interactions between the PSLG polymers in the shell and those in the bulk LC matrix may be responsible. The results show that bio-inspired LCs can assemble suitable colloidal particles into soft crystalline structures.


Assuntos
Cristais Líquidos , Peptídeos/química , Polímeros , Dióxido de Silício , Campos Magnéticos
10.
Langmuir ; 31(40): 11020-32, 2015 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26389788

RESUMO

We demonstrate real-time quantitative phase imaging as a new optical approach for measuring the evaporation dynamics of sessile microdroplets. Quantitative phase images of various droplets were captured during evaporation. The images enabled us to generate time-resolved three-dimensional topographic profiles of droplet shape with nanometer accuracy and, without any assumptions about droplet geometry, to directly measure important physical parameters that characterize surface wetting processes. Specifically, the time-dependent variation of the droplet height, volume, contact radius, contact angle distribution along the droplet's perimeter, and mass flux density for two different surface preparations are reported. The studies clearly demonstrate three phases of evaporation reported previously: pinned, depinned, and drying modes; the studies also reveal instances of partial pinning. Finally, the apparatus is employed to investigate the cooperative evaporation of the sprayed droplets. We observe and explain the neighbor-induced reduction in evaporation rate, that is, as compared to predictions for isolated droplets. In the future, the new experimental methods should stimulate the exploration of colloidal particle dynamics on the gas-liquid-solid interface.

11.
Nature ; 459(7244): 230-3, 2009 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-19444211

RESUMO

When the packing fraction is increased sufficiently, loose particulates jam to form a rigid solid in which the constituents are no longer free to move. In typical granular materials and foams, the thermal energy is too small to produce structural rearrangements. In this zero-temperature (T = 0) limit, multiple diverging and vanishing length scales characterize the approach to a sharp jamming transition. However, because thermal motion becomes relevant when the particles are small enough, it is imperative to understand how these length scales evolve as the temperature is increased. Here we used both colloidal experiments and computer simulations to progress beyond the zero-temperature limit to track one of the key parameters-the overlap distance between neighbouring particles-which vanishes at the T = 0 jamming transition. We find that this structural feature retains a vestige of its T = 0 behaviour and evolves in an unusual manner, which has masked its appearance until now. It is evident as a function of packing fraction at fixed temperature, but not as a function of temperature at fixed packing fraction or pressure. Our results conclusively demonstrate that length scales associated with the T = 0 jamming transition persist in thermal systems, not only in simulations but also in laboratory experiments.

12.
Rep Prog Phys ; 77(5): 056601, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24801604

RESUMO

This review collects and describes experiments that employ colloidal suspensions to probe physics in ordered and disordered solids and related complex fluids. The unifying feature of this body of work is its clever usage of poly(N-isopropylacrylamide) (PNIPAM) microgel particles. These temperature-sensitive colloidal particles provide experimenters with a 'knob' for in situ control of particle size, particle interaction and particle packing fraction that, in turn, influence the structural and dynamical behavior of the complex fluids and solids. A brief summary of PNIPAM particle synthesis and properties is given, followed by a synopsis of current activity in the field. The latter discussion describes a variety of soft matter investigations including those that explore formation and melting of crystals and clusters, and those that probe structure, rearrangement and rheology of disordered (jammed/glassy) and partially ordered matter. The review, therefore, provides a snapshot of a broad range of physics phenomenology which benefits from the unique properties of responsive microgel particles.


Assuntos
Resinas Acrílicas/química , Coloides/química , Géis/química , Modelos Químicos , Modelos Moleculares , Tamanho da Partícula , Transição de Fase
13.
Nature ; 456(7224): 898-903, 2008 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-19092926

RESUMO

Geometric frustration arises when lattice structure prevents simultaneous minimization of local interaction energies. It leads to highly degenerate ground states and, subsequently, to complex phases of matter, such as water ice, spin ice, and frustrated magnetic materials. Here we report a simple geometrically frustrated system composed of closely packed colloidal spheres confined between parallel walls. Diameter-tunable microgel spheres are self-assembled into a buckled triangular lattice with either up or down displacements, analogous to an antiferromagnetic Ising model on a triangular lattice. Experiment and theory reveal single-particle dynamics governed by in-plane lattice distortions that partially relieve frustration and produce ground states with zigzagging stripes and subextensive entropy, rather than the more random configurations and extensive entropy of the antiferromagnetic Ising model. This tunable soft-matter system provides a means to directly visualize the dynamics of frustration, thermal excitations and defects.

14.
Appl Opt ; 53(27): G33-43, 2014 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-25322136

RESUMO

Quantitative phase imaging (QPI) utilizes the fact that the phase of an imaging field is much more sensitive than its amplitude. As fields from the source interact with the specimen, local variations in the phase front are produced, which provide structural information about the sample and can be used to reconstruct its topography with nanometer accuracy. QPI techniques do not require staining or coating of the specimen and are therefore nondestructive. Diffraction phase microscopy (DPM) combines many of the best attributes of current QPI methods; its compact configuration uses a common-path off-axis geometry which realizes the benefits of both low noise and single-shot imaging. This unique collection of features enables the DPM system to monitor, at the nanoscale, a wide variety of phenomena in their natural environments. Over the past decade, QPI techniques have become ubiquitous in biological studies and a recent effort has been made to extend QPI to materials science applications. We briefly review several recent studies which include real-time monitoring of wet etching, photochemical etching, surface wetting and evaporation, dissolution of biodegradable electronic materials, and the expansion and deformation of thin-films. We also discuss recent advances in semiconductor wafer defect detection using QPI.


Assuntos
Aumento da Imagem/instrumentação , Teste de Materiais/instrumentação , Microscopia de Contraste de Fase/instrumentação , Imagem Molecular/instrumentação , Nanopartículas/ultraestrutura , Processamento de Sinais Assistido por Computador/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Lentes
15.
bioRxiv ; 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38948761

RESUMO

The ecological and evolutionary success of multicellular lineages is due in no small part to their increased size relative to unicellular ancestors. However, large size also poses biophysical challenges, especially regarding the transport of nutrients to all cells; these constraints are typically overcome through multicellular innovations (e.g., a circulatory system). Here we show that an emergent biophysical mechanism - spontaneous fluid flows arising from metabolically-generated density gradients - can alleviate constraints on nutrient transport, enabling exponential growth in nascent multicellular clusters of yeast lacking any multicellular adaptations for nutrient transport or fluid flow. Surprisingly, beyond a threshold size, the metabolic activity of experimentally-evolved snowflake yeast clusters drives large-scale fluid flows that transport nutrients throughout the cluster at speeds comparable to those generated by the cilia of extant multicellular organisms. These flows support exponential growth at macroscopic sizes that theory predicts should be diffusion limited. This work demonstrates how simple physical mechanisms can act as a 'biophysical scaffold' to support the evolution of multicellularity by opening up phenotypic possibilities prior to genetically-encoded innovations. More broadly, our findings highlight how co-option of conserved physical processes is a crucial but underappreciated facet of evolutionary innovation across scales.

16.
Nat Ecol Evol ; 8(5): 1010-1020, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38486107

RESUMO

The evolution of multicellular life spurred evolutionary radiations, fundamentally changing many of Earth's ecosystems. Yet little is known about how early steps in the evolution of multicellularity affect eco-evolutionary dynamics. Through long-term experimental evolution, we observed niche partitioning and the adaptive divergence of two specialized lineages from a single multicellular ancestor. Over 715 daily transfers, snowflake yeast were subjected to selection for rapid growth, followed by selection favouring larger group size. Small and large cluster-forming lineages evolved from a monomorphic ancestor, coexisting for over ~4,300 generations, specializing on divergent aspects of a trade-off between growth rate and survival. Through modelling and experimentation, we demonstrate that coexistence is maintained by a trade-off between organismal size and competitiveness for dissolved oxygen. Taken together, this work shows how the evolution of a new level of biological individuality can rapidly drive adaptive diversification and the expansion of a nascent multicellular niche, one of the most historically impactful emergent properties of this evolutionary transition.


Assuntos
Evolução Biológica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Ecossistema
17.
Phys Rev Lett ; 110(3): 035501, 2013 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-23373933

RESUMO

We study the influence of particle shape on growth processes at the edges of evaporating drops. Aqueous suspensions of colloidal particles evaporate on glass slides, and convective flows during evaporation carry particles from drop center to drop edge, where they accumulate. The resulting particle deposits grow inhomogeneously from the edge in two dimensions, and the deposition front, or growth line, varies spatiotemporally. Measurements of the fluctuations of the deposition front during evaporation enable us to identify distinct growth processes that depend strongly on particle shape. Sphere deposition exhibits a classic Poisson-like growth process; deposition of slightly anisotropic particles, however, belongs to the Kardar-Parisi-Zhang universality class, and deposition of highly anisotropic ellipsoids appears to belong to a third universality class, characterized by Kardar-Parisi-Zhang fluctuations in the presence of quenched disorder.

18.
J Chem Phys ; 138(12): 12A525, 2013 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-23556776

RESUMO

We study connections between vibrational spectra and average nearest neighbor number in disordered clusters of colloidal particles with attractive interactions. Measurements of displacement covariances between particles in each cluster permit calculation of the stiffness matrix, which contains effective spring constants linking pairs of particles. From the cluster stiffness matrix, we derive vibrational properties of corresponding "shadow" glassy clusters, with the same geometric configuration and interactions as the "source" cluster but without damping. Here, we investigate the stiffness matrix to elucidate the origin of the correlations between the median frequency of cluster vibrational modes and average number of nearest neighbors in the cluster. We find that the mean confining stiffness of particles in a cluster, i.e., the ensemble-averaged sum of nearest neighbor spring constants, correlates strongly with average nearest neighbor number, and even more strongly with median frequency. Further, we find that the average oscillation frequency of an individual particle is set by the total stiffness of its nearest neighbor bonds; this average frequency increases as the square root of the nearest neighbor bond stiffness, in a manner similar to the simple harmonic oscillator.

19.
bioRxiv ; 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38106219

RESUMO

Oxygen availability is a key factor in the evolution of multicellularity, as larger and more sophisticated organisms often require mechanisms allowing efficient oxygen delivery to their tissues. One such mechanism is the presence of oxygen-binding proteins, such as globins and hemerythrins, which arose in the ancestor of bilaterian animals. Despite their importance, the precise mechanisms by which oxygen-binding proteins influenced the early stages of multicellular evolution under varying environmental oxygen levels are not yet clear. We addressed this knowledge gap by heterologously expressing the oxygen binding proteins myoglobin and myohemerythrin in snowflake yeast, a model system of simple, undifferentiated multicellularity. These proteins increased the depth and rate of oxygen diffusion, increasing the fitness of snowflake yeast growing aerobically. Experiments show that, paradoxically, oxygen-binding proteins confer a greater fitness benefit for larger organisms under high, not low, O2 conditions. We show via biophysical modeling that this is because facilitated diffusion is more efficient when oxygen is abundant, transporting a greater quantity of O2 which can be used for metabolism. By alleviating anatomical diffusion limitations to oxygen consumption, the evolution of O2-binding proteins in the oxygen-rich Neoproterozoic may have been a key breakthrough enabling the evolution of increasingly large, complex multicellular metazoan lineages.

20.
bioRxiv ; 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38014274

RESUMO

Bacteria often attach to surfaces and grow densely-packed communities called biofilms. As biofilms grow, they expand across the surface, increasing their surface area and access to nutrients. Thus, the overall growth rate of a biofilm is directly dependent on its "range expansion" rate. One factor that limits the range expansion rate is vertical growth; at the biofilm edge there is a direct trade-off between horizontal and vertical growth-the more a biofilm grows up, the less it can grow out. Thus, the balance of horizontal and vertical growth impacts the range expansion rate and, crucially, the overall biofilm growth rate. However, the biophysical connection between horizontal and vertical growth remains poorly understood, due in large part to difficulty in resolving biofilm shape with sufficient spatial and temporal resolution from small length scales to macroscopic sizes. Here, we experimentally show that the horizontal expansion rate of bacterial colonies is controlled by the contact angle at the biofilm edge. Using white light interferometry, we measure the three-dimensional surface morphology of growing colonies, and find that small colonies are surprisingly well-described as spherical caps. At later times, nutrient diffusion and uptake prevent the tall colony center from growing exponentially. However, the colony edge always has a region short enough to grow exponentially; the size and shape of this region, characterized by its contact angle, along with cellular doubling time, determines the range expansion rate. We found that the geometry of the exponentially growing biofilm edge is well-described as a spherical-cap-napkin-ring, i.e., a spherical cap with a cylindrical hole in its center (where the biofilm is too tall to grow exponentially). We derive an exact expression for the spherical-cap-napkin-ring-based range expansion rate; further, to first order, the expansion rate only depends on the colony contact angle, the thickness of the exponentially growing region, and the cellular doubling time. We experimentally validate both of these expressions. In line with our theoretical predictions, we find that biofilms with long cellular doubling times and small contact angles do in fact grow faster than biofilms with short cellular doubling times and large contact angles. Accordingly, sensitivity analysis shows that biofilm growth rates are more sensitive to their contact angles than to their cellular growth rates. Thus, to understand the fitness of a growing biofilm, one must account for its shape, not just its cellular doubling time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA