Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Stud Mycol ; 105: 1-22, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38895705

RESUMO

The subphylum Saccharomycotina is a lineage in the fungal phylum Ascomycota that exhibits levels of genomic diversity similar to those of plants and animals. The Saccharomycotina consist of more than 1 200 known species currently divided into 16 families, one order, and one class. Species in this subphylum are ecologically and metabolically diverse and include important opportunistic human pathogens, as well as species important in biotechnological applications. Many traits of biotechnological interest are found in closely related species and often restricted to single phylogenetic clades. However, the biotechnological potential of most yeast species remains unexplored. Although the subphylum Saccharomycotina has much higher rates of genome sequence evolution than its sister subphylum, Pezizomycotina, it contains only one class compared to the 16 classes in Pezizomycotina. The third subphylum of Ascomycota, the Taphrinomycotina, consists of six classes and has approximately 10 times fewer species than the Saccharomycotina. These data indicate that the current classification of all these yeasts into a single class and a single order is an underappreciation of their diversity. Our previous genome-scale phylogenetic analyses showed that the Saccharomycotina contains 12 major and robustly supported phylogenetic clades; seven of these are current families (Lipomycetaceae, Trigonopsidaceae, Alloascoideaceae, Pichiaceae, Phaffomycetaceae, Saccharomycodaceae, and Saccharomycetaceae), one comprises two current families (Dipodascaceae and Trichomonascaceae), one represents the genus Sporopachydermia, and three represent lineages that differ in their translation of the CUG codon (CUG-Ala, CUG-Ser1, and CUG-Ser2). Using these analyses in combination with relative evolutionary divergence and genome content analyses, we propose an updated classification for the Saccharomycotina, including seven classes and 12 orders that can be diagnosed by genome content. This updated classification is consistent with the high levels of genomic diversity within this subphylum and is necessary to make the higher rank classification of the Saccharomycotina more comparable to that of other fungi, as well as to communicate efficiently on lineages that are not yet formally named. Taxonomic novelties: New classes: Alloascoideomycetes M. Groenew., Hittinger, Opulente & A. Rokas, Dipodascomycetes M. Groenew., Hittinger, Opulente & A. Rokas, Lipomycetes M. Groenew., Hittinger, Opulente, A. Rokas, Pichiomycetes M. Groenew., Hittinger, Opulente & A. Rokas, Sporopachydermiomycetes M. Groenew., Hittinger, Opulente & A. Rokas, Trigonopsidomycetes M. Groenew., Hittinger, Opulente & A. Rokas. New orders: Alloascoideomycetes: Alloascoideales M. Groenew., Hittinger, Opulente & A. Rokas; Dipodascomycetes: Dipodascales M. Groenew., Hittinger, Opulente & A. Rokas; Lipomycetes: Lipomycetales M. Groenew., Hittinger, Opulente & A. Rokas; Pichiomycetes: Alaninales M. Groenew., Hittinger, Opulente & A. Rokas, Pichiales M. Groenew., Hittinger, Opulente & A. Rokas, Serinales M. Groenew., Hittinger, Opulente & A. Rokas; Saccharomycetes: Phaffomycetales M. Groenew., Hittinger, Opulente & A. Rokas, Saccharomycodales M. Groenew., Hittinger, Opulente & A. Rokas; Sporopachydermiomycetes: Sporopachydermiales M. Groenew., Hittinger, Opulente & A. Rokas; Trigonopsidomycetes: Trigonopsidales M. Groenew., Hittinger, Opulente & A. Rokas. New families: Alaninales: Pachysolenaceae M. Groenew., Hittinger, Opulente & A. Rokas; Pichiales: Pichiaceae M. Groenew., Hittinger, Opulente & A. Rokas; Sporopachydermiales: Sporopachydermiaceae M. Groenew., Hittinger, Opulente & A. Rokas. Citation: Groenewald M, Hittinger CT, Bensch K, Opulente DA, Shen X-X, Li Y, Liu C, LaBella AL, Zhou X, Limtong S, Jindamorakot S, Gonçalves P, Robert V, Wolfe KH, Rosa CA, Boekhout T, Cadez N, Péter G, Sampaio JP, Lachance M-A, Yurkov AM, Daniel H-M, Takashima M, Boundy-Mills K, Libkind D, Aoki K, Sugita T, Rokas A (2023). A genome-informed higher rank classification of the biotechnologically important fungal subphylum Saccharomycotina. Studies in Mycology 105: 1-22. doi: 10.3114/sim.2023.105.01 This study is dedicated to the memory of Cletus P. Kurtzman (1938-2017), a pioneer of yeast taxonomy.

2.
Antonie Van Leeuwenhoek ; 113(4): 499-510, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31754948

RESUMO

Tree fluxes are sugar-rich, sometimes ephemeral, substrates occurring on sites where tree sap (xylem or phloem) is leaking through damages of tree bark. Tree sap infested with microorganisms has been the source of isolation of many species, including the biotechnologically relevant carotenoid yeast Phaffia rhodozyma. Tree fluxes recently sampled in Germany yielded 19 species, including several psychrophilic yeasts of the genus Mrakia. Four strains from tree fluxes represented a potential novel Mrakia species previously known from two isolates from superficial glacial melting water of Calderone Glacier (Italy). The Italian isolates, originally identified as Mrakia aquatica, and two strains from Germany did not show any sexual structures. But another culture collected in Germany produced clamped hyphae with teliospores. A detailed examination of the five isolates (three from Germany and two from Italy) proved them to be a novel yeast species, which is described in this manuscript as Mrakia fibulata sp. nov. (MB 830398), holotype DSM 103931 and isotype DBVPG 8059. In contrast to other sexually reproducing Mrakia species, M. fibulata produces true hyphae with clamp connections. Also, this is the first psychrotolerant Mrakia species which grows above 20 °C. Spring tree fluxes are widespread and can be recognized and sampled by amateurs in a Citizen Science project. This substrate is a prominent source of yeasts, and may harbor unknown species, as demonstrated in the present work. The description of Mrakia fibulata is dedicated to our volunteer helpers and amateurs, like Anna Yurkova (9-years-old daughter of Andrey Yurkov), who collected the sample which yielded the type strain of this species.


Assuntos
Ecossistema , Leveduras/isolamento & purificação , Leveduras/fisiologia , Betula/microbiologia , Betulaceae/microbiologia , Temperatura Baixa , Cornus/microbiologia , Fagus/microbiologia , Filogenia , Especificidade da Espécie , Leveduras/classificação , Leveduras/genética
3.
Stud Mycol ; 96: 17-140, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32206137

RESUMO

Nearly 500 basidiomycetous yeast species were accepted in the latest edition of The Yeasts: A Taxonomic Study published in 2011. However, this number presents only the tip of the iceberg of yeast species diversity in nature. Possibly more than 99 % of yeast species, as is true for many groups of fungi, are yet unknown and await discovery. Over the past two decades nearly 200 unidentified isolates were obtained during a series of environmental surveys of yeasts in phyllosphere and soils, mainly from China. Among these isolates, 107 new species were identified based on the phylogenetic analyses of nuclear ribosomal DNA (rDNA) [D1/D2 domains of the large subunit (LSU), the small subunit (SSU), and the internal transcribed spacer region including the 5.8S rDNA (ITS)] and protein-coding genes [both subunits of DNA polymerase II (RPB1 and RPB2), the translation elongation factor 1-α (TEF1) and the mitochondrial gene cytochrome b (CYTB)], and physiological comparisons. Forty-six of these belong to 16 genera in the Tremellomycetes (Agaricomycotina). The other 61 are distributed in 26 genera in the Pucciniomycotina. Here we circumscribe eight new genera, three new families and two new orders based on the multi-locus phylogenetic analyses combined with the clustering optimisation analysis and the predicted similarity thresholds for yeasts and filamentous fungal delimitation at genus and higher ranks. Additionally, as a result of these analyses, three new combinations are proposed and 66 taxa are validated.

4.
Antonie Van Leeuwenhoek ; 107(1): 173-85, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25367339

RESUMO

Many species of dimorphic basidiomycetes are known only in their asexual phase and typically those pigmented in different hues of red have been classified in the large polyphyletic genus Rhodotorula. These yeasts are ubiquitous and include a few species of some clinical relevance. The phylogenetic distribution of Rhodotorula spans three classes: Microbotryomycetes, Cystobasidiomycetes and Exobasidiomycetes. Here, the presented multi-gene analyses resolved phylogenetic relationships between the second largest group of Rhodotorula and the mycoparasite Cystobasidium fimetarium (Cystobasidiales, Cystobasidiomycetes, Pucciniomycotina). Based on the results, we propose the transfer of nine species belonging to the Rhodotorula minuta clade into the genus Cystobasidium. As a result, the clinically relevant species R. minuta will be renamed Cystobasidium minutum. This proposal follows ongoing reassessments of the anamorphic genus Rhodotorula reducing the polyphyly of this genus. The delimitation of the R. minuta clade from Rhodotorula species comprised in Sporidiobolales including the type species Rhodotorula glutinis is an important step to overcome obsolete generic placements of asexual basidiomycetous yeasts. Our proposal will also help to distinguish most common red yeasts from clinical samples such as members of Sporidiobolales and Cystobasidiales. The diagnosis of the genus Cystobasidium is amended by including additional characteristics known for the related group of species. The taxonomic change enables us to classify two novel species with the phylogenetically related members of the R. minuta clade in Cystobasidium. The recently from natural environments isolated species are described here as Cystobasidium psychroaquaticum f.a. sp. nov. (K-833(T) = KBP 3881(T) = VKPM Y-3653(T) = CBS 11769(T) = MUCL 52875(T) = DSM 27713(T)) and Cystobasidium rietchiei f.a. sp. nov. (K-780(T) = KBP 4220(T) = VKPM Y-3658(T) = CBS 12324(T) = MUCL 53589(T) = DSM 27155(T)). The new species were registered in MycoBank under MB 809336 and MB 809337, respectively.


Assuntos
Basidiomycota/classificação , Basidiomycota/isolamento & purificação , Microbiologia Ambiental , Basidiomycota/genética , Basidiomycota/fisiologia , Análise por Conglomerados , DNA Fúngico/química , DNA Fúngico/genética , DNA Ribossômico/química , DNA Ribossômico/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Genes de RNAr , Microscopia , Dados de Sequência Molecular , Técnicas de Tipagem Micológica , Filogenia , Pigmentos Biológicos/análise , Plantas/microbiologia , RNA Fúngico/genética , RNA Ribossômico/genética , Análise de Sequência de DNA
5.
Stud Mycol ; 81: 149-89, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26951631

RESUMO

Most small genera containing yeast species in the Pucciniomycotina (Basidiomycota, Fungi) are monophyletic, whereas larger genera including Bensingtonia, Rhodosporidium, Rhodotorula, Sporidiobolus and Sporobolomyces are polyphyletic. With the implementation of the "One Fungus = One Name" nomenclatural principle these polyphyletic genera were revised. Nine genera, namely Bannoa, Cystobasidiopsis, Colacogloea, Kondoa, Erythrobasidium, Rhodotorula, Sporobolomyces, Sakaguchia and Sterigmatomyces, were emended to include anamorphic and teleomorphic species based on the results obtained by a multi-gene phylogenetic analysis, phylogenetic network analyses, branch length-based methods, as well as morphological, physiological and biochemical comparisons. A new class Spiculogloeomycetes is proposed to accommodate the order Spiculogloeales. The new families Buckleyzymaceae with Buckleyzyma gen. nov., Chrysozymaceae with Chrysozyma gen. nov., Microsporomycetaceae with Microsporomyces gen. nov., Ruineniaceae with Ruinenia gen. nov., Symmetrosporaceae with Symmetrospora gen. nov., Colacogloeaceae and Sakaguchiaceae are proposed. The new genera Bannozyma, Buckleyzyma, Fellozyma, Hamamotoa, Hasegawazyma, Jianyunia, Rhodosporidiobolus, Oberwinklerozyma, Phenoliferia, Pseudobensingtonia, Pseudohyphozyma, Sampaiozyma, Slooffia, Spencerozyma, Trigonosporomyces, Udeniozyma, Vonarxula, Yamadamyces and Yunzhangia are proposed to accommodate species segregated from the genera Bensingtonia, Rhodosporidium, Rhodotorula, Sporidiobolus and Sporobolomyces. Ballistosporomyces is emended and reintroduced to include three Sporobolomyces species of the sasicola clade. A total of 111 new combinations are proposed in this study.

6.
Stud Mycol ; 81: 85-147, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26955199

RESUMO

Families and genera assigned to Tremellomycetes have been mainly circumscribed by morphology and for the yeasts also by biochemical and physiological characteristics. This phenotype-based classification is largely in conflict with molecular phylogenetic analyses. Here a phylogenetic classification framework for the Tremellomycetes is proposed based on the results of phylogenetic analyses from a seven-genes dataset covering the majority of tremellomycetous yeasts and closely related filamentous taxa. Circumscriptions of the taxonomic units at the order, family and genus levels recognised were quantitatively assessed using the phylogenetic rank boundary optimisation (PRBO) and modified general mixed Yule coalescent (GMYC) tests. In addition, a comprehensive phylogenetic analysis on an expanded LSU rRNA (D1/D2 domains) gene sequence dataset covering as many as available teleomorphic and filamentous taxa within Tremellomycetes was performed to investigate the relationships between yeasts and filamentous taxa and to examine the stability of undersampled clades. Based on the results inferred from molecular data and morphological and physiochemical features, we propose an updated classification for the Tremellomycetes. We accept five orders, 17 families and 54 genera, including seven new families and 18 new genera. In addition, seven families and 17 genera are emended and one new species name and 185 new combinations are proposed. We propose to use the term pro tempore or pro tem. in abbreviation to indicate the species names that are temporarily maintained.

7.
Extremophiles ; 18(2): 207-18, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24343375

RESUMO

Aerobic methane oxidation has been mostly studied in environments with moderate to low temperatures. However, the process also occurs in terrestrial thermal springs, where little research on the subject has been done to date. The potential activity of methane oxidation and diversity of aerobic methanotrophic bacteria were studied in sediments of thermal springs with various chemical and physical properties, sampled across the Kunashir Island, the Kuriles archipelago. Activity was measured by means of the radioisotope tracer technique utilizing (14)C-labeled methane. Biodiversity assessments were based on the particulate methane monooxygenase (pmoA) gene, which is found in all known thermophilic and thermotolerant methanotrophs. We demonstrated the possibility of methane oxidation in springs with temperature exceeding 74 °C, and the most intensive methane uptake was shown in springs with temperatures about 46 °C. PmoA was detected in 19 out of 30 springs investigated and the number of pmoA gene copies varied between 10(4) and 10(6) copies per ml of sediment. Phylogenetic analysis of PmoA sequences revealed the presence of methanotrophs from both the Alpha- and Gammaproteobacteria. Our results suggest that methanotrophs inhabiting thermal springs with temperature exceeding 50 °C may represent novel thermophilic and thermotolerant species of the genera Methylocystis and Methylothermus, as well as previously undescribed Gammaproteobacteria.


Assuntos
Fontes Termais/microbiologia , Metano/metabolismo , Microbiota , Proteobactérias/isolamento & purificação , Ásia Oriental , Genes Bacterianos , Concentração de Íons de Hidrogênio , Oxirredução , Filogenia , Proteobactérias/genética , Proteobactérias/metabolismo , Sibéria
8.
Int J Syst Evol Microbiol ; 62(Pt 3): 728-734, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21515705

RESUMO

Two strains of a novel teleomorphic basidiomycete were isolated from grassland soil. Standard phenotypic tests and phylogenetic analyses of 26S rRNA gene (D1/D2 domains) and ITS region sequences showed that the species belongs to the core group of the genus Leucosporidium. A novel species, Leucosporidium drummii sp. nov., is proposed to accommodate the two strains, with SEG-3-2-AY220(T) (=CBS 11562(T)=MUCL 52878(T)) as the type strain. In addition, phylogenetic analysis revealed great genetic variability in the Leucosporidium scottii complex.


Assuntos
Basidiomycota/classificação , Basidiomycota/isolamento & purificação , Microbiologia do Solo , Basidiomycota/genética , Basidiomycota/fisiologia , Análise por Conglomerados , DNA Fúngico/química , DNA Fúngico/genética , DNA Ribossômico/química , DNA Ribossômico/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Genes de RNAr , Microscopia , Dados de Sequência Molecular , Técnicas de Tipagem Micológica , Filogenia , RNA Fúngico/genética , RNA Ribossômico/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA