Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 294(6): 1877-1890, 2019 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-30541921

RESUMO

Lignin is a heterogeneous polymer of aromatic subunits that is a major component of lignocellulosic plant biomass. Understanding how microorganisms deconstruct lignin is important for understanding the global carbon cycle and could aid in developing systems for processing plant biomass into valuable commodities. Sphingomonad bacteria use stereospecific glutathione S-transferases (GSTs) called ß-etherases to cleave the ß-aryl ether (ß-O-4) bond, the most common bond between aromatic subunits in lignin. Previously characterized bacterial ß-etherases are homodimers that fall into two distinct GST subclasses: LigE homologues, which cleave the ß(R) stereoisomer of the bond, and LigF homologues, which cleave the ß(S) stereoisomer. Here, we report on a heterodimeric ß-etherase (BaeAB) from the sphingomonad Novosphingobium aromaticivorans that stereospecifically cleaves the ß(R)-aryl ether bond of the di-aromatic compound ß-(2-methoxyphenoxy)-γ-hydroxypropiovanillone (MPHPV). BaeAB's subunits are phylogenetically distinct from each other and from other ß-etherases, although they are evolutionarily related to LigF, despite the fact that BaeAB and LigF cleave different ß-aryl ether bond stereoisomers. We identify amino acid residues in BaeAB's BaeA subunit important for substrate binding and catalysis, including an asparagine that is proposed to activate the GSH cofactor. We also show that BaeAB homologues from other sphingomonads can cleave ß(R)-MPHPV and that they may be as common in bacteria as LigE homologues. Our results suggest that the ability to cleave the ß-aryl ether bond arose independently at least twice in GSTs and that BaeAB homologues may be important for cleaving the ß(R)-aryl ether bonds of lignin-derived oligomers in nature.


Assuntos
Proteínas de Bactérias/química , Glutationa Transferase/química , Lignina/química , Sphingomonadaceae/enzimologia , Catálise , Éteres/química
2.
J Biol Chem ; 293(14): 4955-4968, 2018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29449375

RESUMO

As a major component of plant cell walls, lignin is a potential renewable source of valuable chemicals. Several sphingomonad bacteria have been identified that can break the ß-aryl ether bond connecting most phenylpropanoid units of the lignin heteropolymer. Here, we tested three sphingomonads predicted to be capable of breaking the ß-aryl ether bond of the dimeric aromatic compound guaiacylglycerol-ß-guaiacyl ether (GGE) and found that Novosphingobium aromaticivorans metabolizes GGE at one of the fastest rates thus far reported. After the ether bond of racemic GGE is broken by replacement with a thioether bond involving glutathione, the glutathione moiety must be removed from the resulting two stereoisomers of the phenylpropanoid conjugate ß-glutathionyl-γ-hydroxypropiovanillone (GS-HPV). We found that the Nu-class glutathione S-transferase NaGSTNu is the only enzyme needed to remove glutathione from both (R)- and (S)-GS-HPV in N. aromaticivorans We solved the crystal structure of NaGSTNu and used molecular modeling to propose a mechanism for the glutathione lyase (deglutathionylation) reaction in which an enzyme-stabilized glutathione thiolate attacks the thioether bond of GS-HPV, and the reaction proceeds through an enzyme-stabilized enolate intermediate. Three residues implicated in the proposed mechanism (Thr51, Tyr166, and Tyr224) were found to be critical for the lyase reaction. We also found that Nu-class GSTs from Sphingobium sp. SYK-6 (which can also break the ß-aryl ether bond) and Escherichia coli (which cannot break the ß-aryl ether bond) can also cleave (R)- and (S)-GS-HPV, suggesting that glutathione lyase activity may be common throughout this widespread but largely uncharacterized class of glutathione S-transferases.


Assuntos
Glutationa Transferase/metabolismo , Lignina/metabolismo , Sphingomonadaceae/enzimologia , Substituição de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Glutationa Transferase/química , Glutationa Transferase/genética , Lignina/química , Modelos Moleculares , Conformação Proteica , Multimerização Proteica , Sphingomonadaceae/química , Sphingomonadaceae/genética , Sphingomonadaceae/metabolismo , Estereoisomerismo , Especificidade por Substrato , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA