RESUMO
P-stereogenic phosphines, renowned for their utility as ligands and catalysts, have been instrumental in the field of asymmetric catalysis. However, the catalytic asymmetric synthesis of chiral ligands possessing both axial and phosphine chirality remains a significant challenge. Here, we present the successful demonstration of a Cu-catalyzed asymmetric C-P construction using in situ generated secondary phosphine and heteroaryl chloride. By introducing a chiral NHC ligand and an achiral diphosphine auxiliary ligand, we effectively alleviated the poisoning effect caused by phosphine(III) compounds and suppressed the nonenantioselective background reaction. The reaction exhibited excellent enantioselectivity, with up to 96 %â ee, and good diastereoselectivity, with up to 14 : 1â dr, when employing less sterically hindered secondary phosphines. This particular substrate poses a significant challenge due to its strong poisoning effect in copper catalysis.
RESUMO
Nickel performs excellently in C-C and C-X cross-coupling reactions. Here, we disclose a Ni(II)-catalyzed asymmetric C-P cross-coupling reaction to afford valuable chiral heterocyclic tertiary phosphine oxides. The method is mild and efficient, which invokes a self-sustained nickel catalytic cycle without an external reductant, light irradiation, or electricity.