Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(13): 7071-7081, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32179678

RESUMO

A limited nuclear war between India and Pakistan could ignite fires large enough to emit more than 5 Tg of soot into the stratosphere. Climate model simulations have shown severe resulting climate perturbations with declines in global mean temperature by 1.8 °C and precipitation by 8%, for at least 5 y. Here we evaluate impacts for the global food system. Six harmonized state-of-the-art crop models show that global caloric production from maize, wheat, rice, and soybean falls by 13 (±1)%, 11 (±8)%, 3 (±5)%, and 17 (±2)% over 5 y. Total single-year losses of 12 (±4)% quadruple the largest observed historical anomaly and exceed impacts caused by historic droughts and volcanic eruptions. Colder temperatures drive losses more than changes in precipitation and solar radiation, leading to strongest impacts in temperate regions poleward of 30°N, including the United States, Europe, and China for 10 to 15 y. Integrated food trade network analyses show that domestic reserves and global trade can largely buffer the production anomaly in the first year. Persistent multiyear losses, however, would constrain domestic food availability and propagate to the Global South, especially to food-insecure countries. By year 5, maize and wheat availability would decrease by 13% globally and by more than 20% in 71 countries with a cumulative population of 1.3 billion people. In view of increasing instability in South Asia, this study shows that a regional conflict using <1% of the worldwide nuclear arsenal could have adverse consequences for global food security unmatched in modern history.


Assuntos
Clima , Grão Comestível , Abastecimento de Alimentos , Modelos Biológicos , Guerra Nuclear , Glycine max
2.
Glob Chang Biol ; 28(1): 167-181, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34478595

RESUMO

Modern food production is spatially concentrated in global "breadbaskets." A major unresolved question is whether these peak production regions will shift poleward as the climate warms, allowing some recovery of potential climate-related losses. While agricultural impacts studies to date have focused on currently cultivated land, the Global Gridded Crop Model Intercomparison Project (GGCMI) Phase 2 experiment allows us to assess changes in both yields and the location of peak productivity regions under warming. We examine crop responses under projected end of century warming using seven process-based models simulating five major crops (maize, rice, soybeans, and spring and winter wheat) with a variety of adaptation strategies. We find that in no-adaptation cases, when planting date and cultivar choices are held fixed, regions of peak production remain stationary and yield losses can be severe, since growing seasons contract strongly with warming. When adaptations in management practices are allowed (cultivars that retain growing season length under warming and modified planting dates), peak productivity zones shift poleward and yield losses are largely recovered. While most growing-zone shifts are ultimately limited by geography, breadbaskets studied here move poleward over 600 km on average by end of the century under RCP 8.5. These results suggest that agricultural impacts assessments can be strongly biased if restricted in spatial area or in the scope of adaptive behavior considered. Accurate evaluation of food security under climate change requires global modeling and careful treatment of adaptation strategies.


Assuntos
Mudança Climática , Fazendeiros , Adaptação Psicológica , Agricultura , Produtos Agrícolas , Humanos
3.
Glob Chang Biol ; 27(16): 3870-3882, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33998112

RESUMO

Climate change affects global agricultural production and threatens food security. Faster phenological development of crops due to climate warming is one of the main drivers for potential future yield reductions. To counter the effect of faster maturity, adapted varieties would require more heat units to regain the previous growing period length. In this study, we investigate the effects of variety adaptation on global caloric production under four different future climate change scenarios for maize, rice, soybean, and wheat. Thereby, we empirically identify areas that could require new varieties and areas where variety adaptation could be achieved by shifting existing varieties into new regions. The study uses an ensemble of seven global gridded crop models and five CMIP6 climate models. We found that 39% (SSP5-8.5) of global cropland could require new crop varieties to avoid yield loss from climate change by the end of the century. At low levels of warming (SSP1-2.6), 85% of currently cultivated land can draw from existing varieties to shift within an agro-ecological zone for adaptation. The assumptions on available varieties for adaptation have major impacts on the effectiveness of variety adaptation, which could more than half in SSP5-8.5. The results highlight that region-specific breeding efforts are required to allow for a successful adaptation to climate change.


Assuntos
Produção Agrícola , Melhoramento Vegetal , Agricultura , Mudança Climática , Produtos Agrícolas
4.
Plant Cell Environ ; 42(1): 373-385, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30329164

RESUMO

The superior agronomic and human nutritional properties of grain legumes (pulses) make them an ideal foundation for future sustainable agriculture. Legume-based farming is particularly important in Africa, where small-scale agricultural systems dominate the food production landscape. Legumes provide an inexpensive source of protein and nutrients to African households as well as natural fertilization for the soil. Although the consumption of traditionally grown legumes has started to decline, the production of soybeans (Glycine max Merr.) is spreading fast, especially across southern Africa. Predictions of future land-use allocation and production show that the soybean is poised to dominate future production across Africa. Land use models project an expansion of harvest area, whereas crop models project possible yield increases. Moreover, a seed change in farming strategy is underway. This is being driven largely by the combined cash crop value of products such as oils and the high nutritional benefits of soybean as an animal feed. Intensification of soybean production has the potential to reduce the dependence of Africa on soybean imports. However, a successful "soybean bonanza" across Africa necessitates an intensive research, development, extension, and policy agenda to ensure that soybean genetic improvements and production technology meet future demands for sustainable production.


Assuntos
Produção Agrícola , Grão Comestível , Glycine max , África , Mudança Climática/estatística & dados numéricos , Produção Agrícola/estatística & dados numéricos , Produção Agrícola/tendências , Grão Comestível/crescimento & desenvolvimento , Fabaceae/crescimento & desenvolvimento , Previsões , Modelos Estatísticos , Glycine max/crescimento & desenvolvimento
5.
Plant Cell Physiol ; 58(11): 1833-1847, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29016928

RESUMO

Increasing global CO2 emissions have profound consequences for plant biology, not least because of direct influences on carbon gain. However, much remains uncertain regarding how our major crops will respond to a future high CO2 world. Crop model inter-comparison studies have identified large uncertainties and biases associated with climate change. The need to quantify uncertainty has drawn the fields of plant molecular physiology, crop breeding and biology, and climate change modeling closer together. Comparing data from different models that have been used to assess the potential climate change impacts on soybean and maize production, future yield losses have been predicted for both major crops. When CO2 fertilization effects are taken into account significant yield gains are predicted for soybean, together with a shift in global production from the Southern to the Northern hemisphere. Maize production is also forecast to shift northwards. However, unless plant breeders are able to produce new hybrids with improved traits, the forecasted yield losses for maize will only be mitigated by agro-management adaptations. In addition, the increasing demands of a growing world population will require larger areas of marginal land to be used for maize and soybean production. We summarize the outputs of crop models, together with mitigation options for decreasing the negative impacts of climate on the global maize and soybean production, providing an overview of projected land-use change as a major determining factor for future global crop production.


Assuntos
Mudança Climática , Produtos Agrícolas/fisiologia , Glycine max/crescimento & desenvolvimento , Modelos Biológicos , Zea mays/crescimento & desenvolvimento , Agricultura/métodos , Dióxido de Carbono , Produtos Agrícolas/crescimento & desenvolvimento , Glycine max/fisiologia , Zea mays/fisiologia
6.
Sci Data ; 9(1): 527, 2022 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-36030257

RESUMO

Where land-use change and particularly the expansion of cropland could potentially take place in the future is a central research question to investigate emerging trade-offs between food security, climate protection and biodiversity conservation. We provide consistent global datasets of land potentially suitable, cultivable and available for agricultural use for historic and future time periods from 1980 until 2100 under RCP2.6 and RCP8.5, available at 30 arc-seconds spatial resolution and aggregated at country level. Based on the agricultural suitability of land for 23 globally important food, feed, fiber and bioenergy crops, and high resolution land cover data, our dataset indicates where cultivation is possible and how much land could potentially be used as cropland when biophysical constraints and different assumptions on land-use regulations are taken into account. By serving as an input for land-use models, the produced data could improve the comparability of the models and their output, and thereby contribute to a better understanding of potential land-use trade-offs.

7.
PLoS One ; 17(2): e0263063, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35192630

RESUMO

The pressure on land resources continuously increases not only with the rising demand for agricultural commodities, but also with the growing need for action on global challenges, such as biodiversity loss or climate change, where land plays a crucial role. Land saving as a strategy, where agricultural productivity is increased to allow a reduction of required cropland while sustaining production volumes and meeting demand, could address this trade-off. With our interdisciplinary model-based study, we globally assess regional potentials of land saving and analyze resulting effects on agricultural production, prices and trade. Thereby, different land saving strategies are investigated that (1) minimize required cropland (2) minimize spatial marginalization induced by land saving and (3) maximize the attainable profit. We find that current cropland requirements could be reduced between 37% and 48%, depending on the applied land saving strategy. The generally more efficient use of land would cause crop prices to fall in all regions, but also trigger an increase in global agricultural production of 2.8%. While largest land saving potentials occur in regions with high yield gaps, the impacts on prices and production are strongest in highly populated regions with already high pressure on land. Global crop prices and trade affect regional impacts of land saving on agricultural markets and can displace effects to spatially distant regions. Our results point out the importance of investigating the potentials and effects of land saving in the context of global markets within an integrative, global framework. The resulting land saving potentials can moreover reframe debates on global potentials for afforestation and carbon sequestration, as well as on how to reconcile agricultural production and biodiversity conservation and thus contribute to approaching central goals of the 21st century, addressed for example in the Sustainable Development Goals, the Paris Agreement or the post-2020 global biodiversity framework.


Assuntos
Agricultura/métodos , Conservação dos Recursos Naturais/métodos , Produtos Agrícolas/crescimento & desenvolvimento , Segurança Alimentar/métodos , Agricultura/economia , Agricultura/ética , Biodiversidade , Sequestro de Carbono , Mudança Climática , Comércio/métodos , Ecossistema , Humanos , Internacionalidade , Desenvolvimento Sustentável/tendências
8.
Nat Food ; 2(11): 873-885, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-37117503

RESUMO

Potential climate-related impacts on future crop yield are a major societal concern. Previous projections of the Agricultural Model Intercomparison and Improvement Project's Global Gridded Crop Model Intercomparison based on the Coupled Model Intercomparison Project Phase 5 identified substantial climate impacts on all major crops, but associated uncertainties were substantial. Here we report new twenty-first-century projections using ensembles of latest-generation crop and climate models. Results suggest markedly more pessimistic yield responses for maize, soybean and rice compared to the original ensemble. Mean end-of-century maize productivity is shifted from +5% to -6% (SSP126) and from +1% to -24% (SSP585)-explained by warmer climate projections and improved crop model sensitivities. In contrast, wheat shows stronger gains (+9% shifted to +18%, SSP585), linked to higher CO2 concentrations and expanded high-latitude gains. The 'emergence' of climate impacts consistently occurs earlier in the new projections-before 2040 for several main producing regions. While future yield estimates remain uncertain, these results suggest that major breadbasket regions will face distinct anthropogenic climatic risks sooner than previously anticipated.

9.
Nat Commun ; 10(1): 2844, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31253787

RESUMO

With rising demand for biomass, cropland expansion and intensification represent the main strategies to boost agricultural production, but are also major drivers of biodiversity decline. We investigate the consequences of attaining equal global production gains by 2030, either by cropland expansion or intensification, and analyse their impacts on agricultural markets and biodiversity. We find that both scenarios lead to lower crop prices across the world, even in regions where production decreases. Cropland expansion mostly affects biodiversity hotspots in Central and South America, while cropland intensification threatens biodiversity especially in Sub-Saharan Africa, India and China. Our results suggest that production gains will occur at the costs of biodiversity predominantly in developing tropical regions, while Europe and North America benefit from lower world market prices without putting their own biodiversity at risk. By identifying hotspots of potential future conflicts, we demonstrate where conservation prioritization is needed to balance agricultural production with conservation goals.


Assuntos
Agricultura/economia , Agricultura/métodos , Biodiversidade , Mudança Climática , Conservação dos Recursos Naturais/métodos , Modelos Econômicos
10.
Heliyon ; 4(11): e00919, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30456325

RESUMO

The pace of change in land use and cover in Ethiopia depends on three main factors that cause pressure on agriculture land: resettlement programmes, population growth and increasing agricultural investments. Gambella is one of the regions of Ethiopia that attracts large-scale agricultural investments that extensively drive land use and cover changes in the region. The aim of this study is to examine the rate, extent and distribution of various land use and cover changes in Gambella Regional State, Ethiopia, from 1987 to 2017. The analysis is mainly based on Landsat 5 and Sentinel 2A satellite images and fieldwork. Two Landsat Thematic Mapper and a Sentinel 2A image were used for determining the maximum likelihood of land use/cover classification. The results show that farmland decreased by 26 km2 from 1987 to 2000; however, during the last two decades, agricultural land area increased by 599 km2, mainly at the cost of tropical grasslands and forests. We found that areas cultivated by smallholder farmers increased by 9.17% from 1987 to 2000. However, small-scale farm activities decreased by 7% from 2000 to 2017. Areas cultivated by large-scale state farms totalled 202 km2 in 1987; but by 2000, this large-scale state farming had been completely abandoned by the state, and as a result, its land use has decreased to zero. Despite this, in 2017 large-scale farming increased to 746 km2. In addition, Gambella National Park, which is the nation's largest national park and ecosystem, was also largely affected by Land Use and Land Cover changes. The conversion of savannah/tropical grasslands to agricultural farmland has caused varied and extensive environmental degradation to the park. The Land Use and Land Cover changes in the Gambella region are discussed on the basis of underlying socioeconomic factors.

11.
Nat Commun ; 6: 8946, 2015 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-26558436

RESUMO

Global biomass demand is expected to roughly double between 2005 and 2050. Current studies suggest that agricultural intensification through optimally managed crops on today's cropland alone is insufficient to satisfy future demand. In practice though, improving crop growth management through better technology and knowledge almost inevitably goes along with (1) improving farm management with increased cropping intensity and more annual harvests where feasible and (2) an economically more efficient spatial allocation of crops which maximizes farmers' profit. By explicitly considering these two factors we show that, without expansion of cropland, today's global biomass potentials substantially exceed previous estimates and even 2050s' demands. We attribute 39% increase in estimated global production potentials to increasing cropping intensities and 30% to the spatial reallocation of crops to their profit-maximizing locations. The additional potentials would make cropland expansion redundant. Their geographic distribution points at possible hotspots for future intensification.


Assuntos
Agricultura/tendências , Biomassa , Produtos Agrícolas/crescimento & desenvolvimento , Internacionalidade , Conservação dos Recursos Naturais , Ecossistema , Previsões
12.
PLoS One ; 9(9): e107522, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25229634

RESUMO

Changing natural conditions determine the land's suitability for agriculture. The growing demand for food, feed, fiber and bioenergy increases pressure on land and causes trade-offs between different uses of land and ecosystem services. Accordingly, an inventory is required on the changing potentially suitable areas for agriculture under changing climate conditions. We applied a fuzzy logic approach to compute global agricultural suitability to grow the 16 most important food and energy crops according to the climatic, soil and topographic conditions at a spatial resolution of 30 arc seconds. We present our results for current climate conditions (1981-2010), considering today's irrigated areas and separately investigate the suitability of densely forested as well as protected areas, in order to investigate their potentials for agriculture. The impact of climate change under SRES A1B conditions, as simulated by the global climate model ECHAM5, on agricultural suitability is shown by comparing the time-period 2071-2100 with 1981-2010. Our results show that climate change will expand suitable cropland by additionally 5.6 million km2, particularly in the Northern high latitudes (mainly in Canada, China and Russia). Most sensitive regions with decreasing suitability are found in the Global South, mainly in tropical regions, where also the suitability for multiple cropping decreases.


Assuntos
Agricultura , Mudança Climática , Conservação dos Recursos Naturais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA