Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neuroimage ; 257: 119286, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35597401

RESUMO

Brain areas show specific cellular, molecular, and gene expression patterns that are linked to function, but their precise relationships are largely unknown. To unravel these structure-function relationships, a combined analysis of 53 neurotransmitter receptor genes, receptor densities of six transmitter systems and cytoarchitectonic data of the auditory, somatosensory, visual, motor systems was conducted. Besides covariation of areal gene expression with receptor density, the study reveals specific gene expression patterns in functional systems, which are most prominent for the inhibitory GABAA and excitatory glutamatergic NMDA receptors. Furthermore, gene expression-receptor relationships changed in a systematic manner according to information flow from primary to higher associative areas. The findings shed new light on the relationship of anatomical, functional, and molecular and transcriptomic principles of cortical segregation towards a more comprehensive understanding of human brain organization.


Assuntos
Encéfalo , Transcriptoma , Encéfalo/metabolismo , Mapeamento Encefálico , Humanos , Receptores de Neurotransmissores/metabolismo
2.
Biol Psychiatry ; 93(5): 471-479, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36567226

RESUMO

This review focuses on cytoarchitectonics and receptor architectonics as biological correlates of function and connectivity. It introduces the 3-dimensional cytoarchitectonic probabilistic maps of cortical areas and nuclei of the Julich-Brain Atlas, available at EBRAINS, to study structure-function relationships. The maps are linked to the BigBrain as microanatomical reference model and template space. The siibra software tool suite enables programmatic access to the maps and to receptor architectonic data that are anchored to brain areas. Such cellular and molecular data are tools for studying magnetic resonance connectivity including modeling and simulation. At the end, we highlight perspectives of the Julich-Brain as well as methodological considerations. Thus, microstructural maps as part of a multimodal atlas help elucidate the biological correlates of large-scale networks and brain function with a high level of anatomical detail, which provides a basis to study brains of patients with psychiatric disorders.


Assuntos
Mapeamento Encefálico , Encéfalo , Humanos , Mapeamento Encefálico/métodos , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Simulação por Computador
3.
Handb Clin Neurol ; 187: 17-51, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35964970

RESUMO

The temporal cortex encompasses a large number of different areas ranging from the six-layered isocortex to the allocortex. The areas support auditory, visual, and language processing, as well as emotions and memory. The primary auditory cortex is found at the Heschl gyri, which develop early in ontogeny with the Sylvian fissure, a deep and characteristic fissure that separates the temporal lobe from the parietal and frontal lobes. Gyri and sulci as well as brain areas vary between brains and between hemispheres, partly linked to the functional organization of language and lateralization. Interindividual variability in anatomy makes a direct comparison between different brains in structure-functional analysis often challenging, but can be addressed by applying cytoarchitectonic probability maps of the Julich-Brain atlas. We review the macroanatomy of the temporal lobe, its variability and asymmetry at the macro- and the microlevel, discuss the relationship to brain areas and their microstructure, and emphasize the advantage of a multimodal approach to address temporal lobe organization. We review recent data on combined cytoarchitectonic and molecular architectonic studies of temporal areas, and provide links to their function.


Assuntos
Córtex Auditivo , Lobo Temporal , Encéfalo/anatomia & histologia , Lobo Frontal/anatomia & histologia , Humanos , Idioma , Lobo Temporal/anatomia & histologia
4.
Cortex ; 128: 1-21, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32298845

RESUMO

The architectonical organization of putatively higher auditory areas in the human superior temporal gyrus and sulcus is not yet well understood. To provide a coherent map of this part of the brain, which is involved in language and other functions, we examined the cytoarchitecture and cortical parcellation of this region in histological sections of ten human postmortem brains using an observer-independent mapping approach. Two new areas were identified in the temporo-insular region (areas TeI, TI). TeI is medially adjacent to the primary auditory cortex (area Te1). TI is located between TeI and the insular cortex. Laterally adjacent to previously mapped areas Te2 and Te3, two new areas (STS1, STS2) were identified in the superior temporal sulcus. All four areas were mapped over their whole extent in serial, cell-body stained sections, and their cytoarchitecture was analyzed using quantitative image analysis and multivariate statistics. Interestingly, area TeI, which is located between area Te1 and area TI at the transition to the insula, was more similar in cytoarchitecture to lateral area Te2.1 than to the directly adjacent areas TI and Te1. Such structural similarity of areas medially and laterally to Te1 would be in line with the core-belt-parabelt concept in macaques. The cytoarchitectonic probabilistic maps of all areas show the localization of the areas and their interindividual variability. The new maps are publicly available and provide a basis to further explore structural-functional relationship of the language network in the temporal cortex.


Assuntos
Córtex Auditivo , Mapeamento Encefálico , Humanos , Neurônios , Lobo Temporal
5.
Elife ; 92020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32755545

RESUMO

The human superior temporal plane, the site of the auditory cortex, displays high inter-individual macro-anatomical variation. This questions the validity of curvature-based alignment (CBA) methods for in vivo imaging data. Here, we have addressed this issue by developing CBA+, which is a cortical surface registration method that uses prior macro-anatomical knowledge. We validate this method by using cytoarchitectonic areas on 10 individual brains (which we make publicly available). Compared to volumetric and standard surface registration, CBA+ results in a more accurate cytoarchitectonic auditory atlas. The improved correspondence of micro-anatomy following the improved alignment of macro-anatomy validates the superiority of CBA+ compared to CBA. In addition, we use CBA+ to align in vivo and postmortem data. This allows projection of functional and anatomical information collected in vivo onto the cytoarchitectonic areas, which has the potential to contribute to the ongoing debate on the parcellation of the human auditory cortex.


Assuntos
Córtex Auditivo/citologia , Mapeamento Encefálico/métodos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA