Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 84(3): 584-595.e6, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38244546

RESUMO

The most abundant N6-methyladenosine (m6A) modification on mRNAs is installed non-stoichiometrically across transcripts, with 5' untranslated regions (5' UTRs) being the least conductive. 5' UTRs are essential for translation initiation, yet the molecular mechanisms orchestrated by m6A remain poorly understood. Here, we combined structural, biochemical, and single-molecule approaches and show that at the most common position, a single m6A does not affect translation yields, the kinetics of translation initiation complex assembly, or start codon recognition both under permissive growth and following exposure to oxidative stress. Cryoelectron microscopy (cryo-EM) structures of the late preinitiation complex reveal that m6A purine ring established stacking interactions with an arginine side chain of the initiation factor eIF2α, although with only a marginal energy contribution, as estimated computationally. These findings provide molecular insights into m6A interactions with the initiation complex and suggest that the subtle stabilization is unlikely to affect the translation dynamics under homeostatic conditions or stress.


Assuntos
Adenosina/análogos & derivados , Iniciação Traducional da Cadeia Peptídica , Biossíntese de Proteínas , Regiões 5' não Traduzidas , Microscopia Crioeletrônica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Códon de Iniciação/genética
2.
Cell ; 159(6): 1447-60, 2014 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-25433700

RESUMO

The spectrin superfamily of proteins plays key roles in assembling the actin cytoskeleton in various cell types, crosslinks actin filaments, and acts as scaffolds for the assembly of large protein complexes involved in structural integrity and mechanosensation, as well as cell signaling. α-actinins in particular are the major actin crosslinkers in muscle Z-disks, focal adhesions, and actin stress fibers. We report a complete high-resolution structure of the 200 kDa α-actinin-2 dimer from striated muscle and explore its functional implications on the biochemical and cellular level. The structure provides insight into the phosphoinositide-based mechanism controlling its interaction with sarcomeric proteins such as titin, lays a foundation for studying the impact of pathogenic mutations at molecular resolution, and is likely to be broadly relevant for the regulation of spectrin-like proteins.


Assuntos
Actinina/química , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Humanos , Ligantes , Modelos Moleculares , Dados de Sequência Molecular , Músculo Esquelético/química , Estrutura Terciária de Proteína , Espalhamento a Baixo Ângulo , Alinhamento de Sequência , Difração de Raios X
3.
Nucleic Acids Res ; 50(7): 4054-4067, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35357492

RESUMO

During packaging in positive-sense single-stranded RNA (+ssRNA) viruses, coat proteins (CPs) interact directly with multiple regions in genomic RNA (gRNA), but the underlying physicochemical principles remain unclear. Here we analyze the high-resolution cryo-EM structure of bacteriophage MS2 and show that the gRNA/CP binding sites, including the known packaging signal, overlap significantly with regions where gRNA nucleobase-density profiles match the corresponding CP nucleobase-affinity profiles. Moreover, we show that the MS2 packaging signal corresponds to the global minimum in gRNA/CP interaction energy in the unstructured state as derived using a linearly additive model and knowledge-based nucleobase/amino-acid affinities. Motivated by this, we predict gRNA/CP interaction sites for a comprehensive set of 1082 +ssRNA viruses. We validate our predictions by comparing them with site-resolved information on gRNA/CP interactions derived in SELEX and CLIP experiments for 10 different viruses. Finally, we show that in experimentally studied systems CPs frequently interact with autologous coding regions in gRNA, in agreement with both predicted interaction energies and a recent proposal that proteins in general tend to interact with own mRNAs, if unstructured. Our results define a self-consistent framework for understanding packaging in +ssRNA viruses and implicate interactions between unstructured gRNA and CPs in the process.


Assuntos
Vírus de RNA , Vírus , Proteínas do Capsídeo/metabolismo , Vírus de RNA/genética , RNA Guia de Cinetoplastídeos , RNA Viral/química , Montagem de Vírus/genética , Vírus/genética
4.
Nucleic Acids Res ; 50(17): 9984-9999, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36107779

RESUMO

Autogenous interactions between mRNAs and the proteins they encode are implicated in cellular feedback-loop regulation, but their extent and mechanistic foundation are unclear. It was recently hypothesized that such interactions may be common, reflecting the role of intrinsic nucleobase-amino acid affinities in shaping the genetic code's structure. Here we analyze a comprehensive set of CLIP-seq experiments involving multiple protocols and report on widespread autogenous interactions across different organisms. Specifically, 230 of 341 (67%) studied RNA-binding proteins (RBPs) interact with their own mRNAs, with a heavy enrichment among high-confidence hits and a preference for coding sequence binding. We account for different confounding variables, including physical (overexpression and proximity during translation), methodological (difference in CLIP protocols, peak callers and cell types) and statistical (treatment of null backgrounds). In particular, we demonstrate a high statistical significance of autogenous interactions by sampling null distributions of fixed-margin interaction matrices. Furthermore, we study the dependence of autogenous binding on the presence of RNA-binding motifs and structured domains in RBPs. Finally, we show that intrinsic nucleobase-amino acid affinities favor co-aligned binding between mRNA coding regions and the proteins they encode. Our results suggest a central role for autogenous interactions in RBP regulation and support the possibility of a fundamental connection between coding and binding.


Assuntos
Sequenciamento de Cromatina por Imunoprecipitação , Proteínas de Ligação a RNA , Aminoácidos/genética , Sítios de Ligação/genética , RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Análise de Sequência de RNA/métodos
5.
Nucleic Acids Res ; 50(D1): D287-D294, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34403477

RESUMO

RNA-binding proteins (RBPs) play key roles in post-transcriptional regulation. Accurate identification of RBP binding sites in multiple cell lines and tissue types from diverse species is a fundamental endeavor towards understanding the regulatory mechanisms of RBPs under both physiological and pathological conditions. Our POSTAR annotation processes make use of publicly available large-scale CLIP-seq datasets and external functional genomic annotations to generate a comprehensive map of RBP binding sites and their association with other regulatory events as well as functional variants. Here, we present POSTAR3, an updated database with improvements in data collection, annotation infrastructure, and analysis that support the annotation of post-transcriptional regulation in multiple species including: we made a comprehensive update on the CLIP-seq and Ribo-seq datasets which cover more biological conditions, technologies, and species; we added RNA secondary structure profiling for RBP binding sites; we provided miRNA-mediated degradation events validated by degradome-seq; we included RBP binding sites at circRNA junction regions; we expanded the annotation of RBP binding sites, particularly using updated genomic variants and mutations associated with diseases. POSTAR3 is freely available at http://postar.ncrnalab.org.


Assuntos
Bases de Dados Genéticas , MicroRNAs/genética , Processamento Pós-Transcricional do RNA , RNA Circular/genética , Proteínas de Ligação a RNA/genética , Software , Animais , Arabidopsis/genética , Arabidopsis/metabolismo , Sítios de Ligação , Linhagem Celular , Conjuntos de Dados como Assunto , Humanos , Internet , MicroRNAs/classificação , MicroRNAs/metabolismo , Anotação de Sequência Molecular , Conformação de Ácido Nucleico , RNA Circular/classificação , RNA Circular/metabolismo , Proteínas de Ligação a RNA/classificação , Proteínas de Ligação a RNA/metabolismo , Análise de Sequência de RNA
6.
Proc Natl Acad Sci U S A ; 117(11): 5907-5912, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32127487

RESUMO

Frameshifts in protein coding sequences are widely perceived as resulting in either nonfunctional or even deleterious protein products. Indeed, frameshifts typically lead to markedly altered protein sequences and premature stop codons. By analyzing complete proteomes from all three domains of life, we demonstrate that, in contrast, several key physicochemical properties of protein sequences exhibit significant robustness against +1 and -1 frameshifts. In particular, we show that hydrophobicity profiles of many protein sequences remain largely invariant upon frameshifting. For example, over 2,900 human proteins exhibit a Pearson's correlation coefficient R between the hydrophobicity profiles of the original and the +1-frameshifted variants greater than 0.7, despite an average sequence identity between the two of only 6.5% in this group. We observe a similar effect for protein sequence profiles of affinity for certain nucleobases as well as protein sequence profiles of intrinsic disorder. Finally, analysis of significance and optimality demonstrates that frameshift stability is embedded in the structure of the universal genetic code and may have contributed to shaping it. Our results suggest that frameshifting may be a powerful evolutionary mechanism for creating new proteins with vastly different sequences, yet similar physicochemical properties to the proteins from which they originate.


Assuntos
Fenômenos Químicos , Mutação da Fase de Leitura , Proteínas/química , Sequência de Aminoácidos , Evolução Molecular , Código Genético , Humanos , Interações Hidrofóbicas e Hidrofílicas , Fases de Leitura Aberta , Proteínas/genética
7.
Nucleic Acids Res ; 47(W1): W632-W635, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31114895

RESUMO

The structure, dynamics and, ultimately, biological function of proteins and nucleic acids are determined by the physicochemical properties of their primary sequences. Such properties are frequently captured via one-dimensional profile plots depicting a given physicochemical variable as a function of sequence position. Hydrophobicity, charge or structural disorder in proteins or nucleobase-density in nucleic acids are routinely visualized in this manner to analyze sequences at a glance. Such visualizations, however, are typically created case-by-case in a purely static manner, employ fixed visualization parameters only and do not enable a quantitative comparison between different sequences. Here, we present VOLPES (volpes.univie.ac.at), a user-friendly web server and the corresponding JavaScript library that enable a fully interactive, multifunctional visualization, analysis and comparison of the physicochemical properties of protein and nucleic-acid sequences, allowing unprecedented insight into biological sequence data and creating a starting point for further in-depth exploration.


Assuntos
Análise de Sequência de Proteína/métodos , Análise de Sequência de RNA/métodos , Software , Gráficos por Computador , Internet , Proteínas/química , RNA/química , Interface Usuário-Computador
8.
Nucleic Acids Res ; 47(21): 11077-11089, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31612955

RESUMO

To address the structural and dynamical consequences of amino-acid attachment at 2'- or 3'-hydroxyls of the terminal ribose in oligoribonucleotides, we have performed an extensive set of molecular dynamics simulations of model aminoacylated RNA trinucleotides. Our simulations suggest that 3'-modified trinucleotides exhibit higher solvent exposure of the aminoacylester bond and may be more susceptible to hydrolysis than their 2' counterparts. Moreover, we observe an invariant adoption of well-defined collapsed and extended conformations for both stereoisomers. We show that the average conformational preferences of aminoacylated trinucleotides are determined by their nucleotide composition and are fine-tuned by amino-acid attachment. Conversely, solvent exposure of the aminoacylester bond depends on the attachment site, the nature of attached amino acid and the strength of its interactions with the bases. Importantly, aminoacylated CCA trinucleotides display a systematically higher solvent exposure of the aminoacylester bond and a weaker dependence of such exposure on sidechain interactions than other trinucleotides. These features could facilitate hydrolytic release of the amino acid, especially for 3' attachment, and may have contributed to CCA becoming the universal acceptor triplet in tRNAs. Our results provide novel atomistic details about fundamental aspects of biological translation and furnish clues about its primordial origins.


Assuntos
Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Oligorribonucleotídeos/química , Aminoacil-RNA de Transferência/química , Aminoácidos/metabolismo , Estereoisomerismo , Especificidade por Substrato , Aminoacilação de RNA de Transferência
9.
Nat Rev Mol Cell Biol ; 9(4): 333-6, 2008 04.
Artigo em Inglês | MEDLINE | ID: mdl-18322466

RESUMO

With the expanding unification of Europe, the face of European science is changing. For some countries these changes are more pronounced than for others. Here, we survey the present state of science, most notably molecular biology research, in Eastern and South-Eastern European countries. We focus on the strategies these countries are taking in their quest for scientific excellence, discuss some of the acute challenges they face and explore several success stories in the making.


Assuntos
Biologia/tendências , Europa Oriental , Geografia
10.
Nucleic Acids Res ; 45(16): 9741-9759, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-28934471

RESUMO

Poly(ADP-ribose) glycohydrolase (PARG) regulates cellular poly(ADP-ribose) (PAR) levels by rapidly cleaving glycosidic bonds between ADP-ribose units. PARG interacts with proliferating cell nuclear antigen (PCNA) and is strongly recruited to DNA damage sites in a PAR- and PCNA-dependent fashion. Here we identified PARG acetylation site K409 that is essential for its interaction with PCNA, its localization within replication foci and its recruitment to DNA damage sites. We found K409 to be part of a non-canonical PIP-box within the PARG disordered regulatory region. The previously identified putative N-terminal PIP-box does not bind PCNA directly but contributes to PARG localization within replication foci. X-ray structure and MD simulations reveal that the PARG non-canonical PIP-box binds PCNA in a manner similar to other canonical PIP-boxes and may represent a new type of PIP-box. While the binding of previously described PIP-boxes is based on hydrophobic interactions, PARG PIP-box binds PCNA via both stabilizing hydrophobic and fine-tuning electrostatic interactions. Our data explain the mechanism of PARG-PCNA interaction through a new PARG PIP-box that exhibits non-canonical sequence properties but a canonical mode of PCNA binding.


Assuntos
Glicosídeo Hidrolases/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Acetilação , Calorimetria/métodos , Cromatina/metabolismo , Cristalografia por Raios X , Dano ao DNA , Transferência Ressonante de Energia de Fluorescência , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/genética , Células HeLa , Humanos , Imunoprecipitação , Lasers , Lisina/genética , Lisina/metabolismo , Simulação de Dinâmica Molecular , Antígeno Nuclear de Célula em Proliferação/química , Conformação Proteica , Fase S/genética , Eletricidade Estática
11.
Proc Natl Acad Sci U S A ; 113(38): 10553-8, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27601672

RESUMO

Cotranscriptional ubiquitination of histone H2B is key to gene regulation. The yeast E3 ubiquitin ligase Bre1 (human RNF20/40) pairs with the E2 ubiquitin conjugating enzyme Rad6 to monoubiquitinate H2B at Lys123. How this single lysine residue on the nucleosome core particle (NCP) is targeted by the Rad6-Bre1 machinery is unknown. Using chemical cross-linking and mass spectrometry, we identified the functional interfaces of Rad6, Bre1, and NCPs in a defined in vitro system. The Bre1 RING domain cross-links exclusively with distinct regions of histone H2B and H2A, indicating a spatial alignment of Bre1 with the NCP acidic patch. By docking onto the NCP surface in this distinct orientation, Bre1 positions the Rad6 active site directly over H2B Lys123. The Spt-Ada-Gcn5 acetyltransferase (SAGA) H2B deubiquitinase module competes with Bre1 for binding to the NCP acidic patch, indicating regulatory control. Our study reveals a mechanism that ensures site-specific NCP ubiquitination and fine-tuning of opposing enzymatic activities.


Assuntos
Histonas/química , Proteínas de Saccharomyces cerevisiae/química , Enzimas de Conjugação de Ubiquitina/química , Ubiquitinação/genética , Regulação Enzimológica da Expressão Gênica , Histonas/genética , Humanos , Simulação de Acoplamento Molecular , Nucleossomos/química , Nucleossomos/genética , Conformação Proteica , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina/química , Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/genética , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética
12.
Bioinformatics ; 33(16): 2604-2606, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28379299

RESUMO

SUMMARY: The currently available functional enrichment software focuses mostly on gene expression analysis, whereby server- and graphical-user-interface-based tools with specific scope dominate the field. Here we present an efficient, user-friendly, multifunctional command-line-based functional enrichment tool (fu-en-to), tailored for the bioinformatics researcher. AVAILABILITY AND IMPLEMENTATION: Source code and binaries freely available for download at github.com/DavidWeichselbaum/fuento, implemented in C ++ and supported on Linux and OS X. CONTACT: newant@gmail.com or bojan.zagrovic@univie.ac.at.


Assuntos
Biologia Computacional/métodos , Proteínas/metabolismo , Software , Humanos , Proteínas/fisiologia
13.
PLoS Comput Biol ; 13(7): e1005648, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28750009

RESUMO

It has recently been demonstrated that the nucleobase-density profiles of mRNA coding sequences are related in a complementary manner to the nucleobase-affinity profiles of their cognate protein sequences. Based on this, it has been proposed that cognate mRNA/protein pairs may bind in a co-aligned manner, especially if unstructured. Here, we study the dependence of mRNA/protein sequence complementarity on the properties of the nucleobase/amino-acid affinity scales used. Specifically, we sample the space of randomly generated scales by employing a Monte Carlo strategy with a fitness function that depends directly on the level of complementarity. For model organisms representing all three domains of life, we show that even short searches reproducibly converge upon highly optimized scales, implying that the topology of the underlying fitness landscape is decidedly funnel-like. Furthermore, the optimized scales, generated without any consideration of the physicochemical attributes of nucleobases or amino acids, resemble closely the nucleobase/amino-acid binding affinity scales obtained from experimental structures of RNA-protein complexes. This provides support for the claim that mRNA/protein sequence complementarity may indeed be related to binding between the two. Finally, we characterize suboptimal scales and show that intermediate-to-high complementarity can be reached by substantially diverse scales, but with select amino acids contributing disproportionally. Our results expose the dependence of cognate mRNA/protein sequence complementarity on the properties of the underlying nucleobase/amino-acid affinity scales and provide quantitative constraints that any physical scales need to satisfy for the complementarity to hold.


Assuntos
Sequência de Aminoácidos/fisiologia , Sequência de Bases/fisiologia , Proteínas/química , Proteínas/metabolismo , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Sequência de Aminoácidos/genética , Sequência de Bases/genética , Biologia Computacional , Escherichia coli/genética , Methanocaldococcus/genética , Modelos Genéticos , Método de Monte Carlo , Proteínas/genética , RNA Mensageiro/genética , Saccharomyces cerevisiae/genética , Software
14.
Nucleic Acids Res ; 43(6): 3012-21, 2015 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-25753660

RESUMO

It has recently been demonstrated that nucleobase-density profiles of typical mRNA coding sequences exhibit a complementary relationship with nucleobase-interaction propensity profiles of their cognate protein sequences. This finding supports the idea that the genetic code developed in response to direct binding interactions between amino acids and appropriate nucleobases, but also suggests that present-day mRNAs and their cognate proteins may be physicochemically complementary to each other and bind. Here, we computationally recode complete Methanocaldococcus jannaschii, Escherichia coli and Homo sapiens mRNA transcriptomes and analyze how much complementary matching of synonymous mRNAs can vary, while keeping protein sequences fixed. We show that for most proteins there exist cognate mRNAs that improve, but also significantly worsen the level of native matching (e.g. by 1.8 viz. 7.6 standard deviations on average for H. sapiens, respectively), with the least malleable proteins in this sense being strongly enriched in nuclear localization and DNA-binding functions. Even so, we show that the majority of recodings for most proteins result in pronounced complementarity. Our results suggest that the genetic code was designed for favorable, yet tunable compositional complementarity between mRNAs and their cognate proteins, supporting the hypothesis that the interactions between the two were an important defining element behind the code's origin.


Assuntos
Proteínas/química , Proteínas/metabolismo , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Sequência de Bases , Códon/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Código Genético , Humanos , Methanocaldococcus/genética , Methanocaldococcus/metabolismo , Proteínas/genética , Proteoma , RNA Arqueal/química , RNA Arqueal/genética , RNA Arqueal/metabolismo , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Mensageiro/genética , Transcriptoma
15.
Nucleic Acids Res ; 43(2): 708-18, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25550435

RESUMO

Despite the great importance of nucleic acid-protein interactions in the cell, our understanding of their physico-chemical basis remains incomplete. In order to address this challenge, we have for the first time determined potentials of mean force and the associated absolute binding free energies between all standard RNA/DNA nucleobases and amino-acid sidechain analogs in high- and low-dielectric environments using molecular dynamics simulations and umbrella sampling. A comparison against a limited set of available experimental values for analogous systems attests to the quality of the computational approach and the force field used. Overall, our analysis provides a microscopic picture behind nucleobase/sidechain interaction preferences and creates a unified framework for understanding and sculpting nucleic acid-protein interactions in different contexts. Here, we use this framework to demonstrate a strong relationship between nucleobase density profiles of mRNAs and nucleobase affinity profiles of their cognate proteins and critically analyze a recent hypothesis that the two may be capable of direct, complementary interactions.


Assuntos
Aminoácidos/química , Proteínas de Ligação a DNA/química , DNA/química , Proteínas de Ligação a RNA/química , RNA/química , Código Genético , Metanol/química , Simulação de Dinâmica Molecular , Ligação Proteica , RNA Mensageiro/química , Água/química
16.
Biophys J ; 110(7): 1499-1509, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-27074676

RESUMO

During their life cycle, proteins are subject to different modifications involving reactive oxygen species. Such oxidative damage to proteins may lead to the formation of insoluble aggregates and cytotoxicity and is associated with age-related disorders including neurodegenerative diseases, cancer, and diabetes. Superoxide dismutase 1 (SOD1), a key antioxidant enzyme in human cells, is particularly susceptible to such modifications. Moreover, this homodimeric metalloenzyme has been directly linked to both familial and sporadic amyotrophic lateral sclerosis (ALS), a devastating, late-onset motor neuronal disease, with more than 150 ALS-related mutations in the SOD1 gene. Importantly, oxidatively damaged SOD1 aggregates have been observed in both familial and sporadic forms of the disease. However, the molecular mechanisms as well as potential implications of oxidative stress in SOD1-induced cytotoxicity remain elusive. In this study, we examine the effects of oxidative modification on SOD1 monomer and homodimer stability, the key molecular properties related to SOD1 aggregation. We use molecular dynamics simulations in combination with thermodynamic integration to study microscopic-level site-specific effects of oxidative "mutations" at the dimer interface, including lysine, arginine, proline and threonine carbonylation, and cysteine oxidation. Our results show that oxidative damage of even single residues at the interface may drastically destabilize the SOD1 homodimer, with several modifications exhibiting a comparable effect to that of the most drastic ALS-causing mutations known. Additionally, we show that the SOD1 monomer stability decreases upon oxidative stress, which may lead to partial local unfolding and consequently to increased aggregation propensity. Importantly, these results suggest that oxidative stress may play a key role in development of ALS, with the mutations in the SOD1 gene being an additional factor.


Assuntos
Multimerização Proteica , Superóxido Dismutase-1/química , Superóxido Dismutase-1/metabolismo , Estabilidade Enzimática , Humanos , Simulação de Dinâmica Molecular , Oxirredução , Estresse Oxidativo , Estrutura Quaternária de Proteína , Termodinâmica
17.
J Am Chem Soc ; 138(17): 5519-22, 2016 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-27093234

RESUMO

A central intermediate in purine catabolism, the inosine nucleobase hypoxanthine is also one of the most abundant modified nucleobases in RNA and plays key roles in the regulation of gene expression and determination of cell fate. It is known that hypoxanthine acts as guanine when interacting with other nucleobases and base pairs most favorably with cytosine. However, its preferences when it comes to interactions with amino acids remain unknown. Here we present for the first time the absolute binding free energies and the associated interaction modes between hypoxanthine and all standard, non-glycyl/non-prolyl amino acid side chain analogs as derived from molecular dynamics simulations and umbrella sampling in high- and low-dielectric environments. We illustrate the biological relevance of the derived affinities by providing a quantitative explanation for the specificity of hypoxanthine-guanine phosphoribosyltransferase, a key enzyme in the purine salvage pathway. Our results demonstrate that in its affinities for protein side chains, hypoxanthine closely matches guanine, much more so than its precursor adenine.


Assuntos
Guanina/química , Inosina/química , Proteínas/química , Hipoxantina Fosforribosiltransferase/química
18.
Nucleic Acids Res ; 42(21): 12984-94, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25361976

RESUMO

Many critical processes in the cell involve direct binding between RNAs and proteins, making it imperative to fully understand the physicochemical principles behind such interactions at the atomistic level. Here, we use molecular dynamics simulations and 15 µs of sampling to study the behavior of amino acids and amino acid sidechain analogs in high-concentration aqueous solutions of standard RNA nucleobases. Structural and energetic analysis of simulated systems allows us to derive interaction propensity scales for different amino acid/nucleobase combinations. The derived scales closely match and greatly extend the available experimental data, providing a comprehensive foundation for studying RNA-protein interactions in different contexts. By using these scales, we demonstrate a statistically significant connection between nucleobase composition of human mRNA coding sequences and nucleobase interaction propensities of their cognate protein sequences. For example, pyrimidine density profiles of mRNAs match uracil-propensity profiles of their cognate proteins with a median Pearson correlation coefficient of R = -0.70. Our results provide support for the recently proposed hypotheses that mRNAs and their cognate proteins may be physicochemically complementary to each other and bind, especially if unstructured, with the complementarity level being negatively influenced by mRNA adenine content. Finally, we utilize the derived scales to refine the complementarity hypothesis and closely examine its physicochemical underpinnings.


Assuntos
Aminoácidos/química , RNA Mensageiro/química , Proteínas de Ligação a RNA/química , RNA/química , Biologia Computacional , Humanos , Simulação de Dinâmica Molecular , Ligação Proteica , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo
20.
PLoS Comput Biol ; 10(5): e1003638, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24854339

RESUMO

The high concentration of macromolecules in the crowded cellular interior influences different thermodynamic and kinetic properties of proteins, including their structural stabilities, intermolecular binding affinities and enzymatic rates. Moreover, various structural biology methods, such as NMR or different spectroscopies, typically involve samples with relatively high protein concentration. Due to large sampling requirements, however, the accuracy of classical molecular dynamics (MD) simulations in capturing protein behavior at high concentration still remains largely untested. Here, we use explicit-solvent MD simulations and a total of 6.4 µs of simulated time to study wild-type (folded) and oxidatively damaged (unfolded) forms of villin headpiece at 6 mM and 9.2 mM protein concentration. We first perform an exhaustive set of simulations with multiple protein molecules in the simulation box using GROMOS 45a3 and 54a7 force fields together with different types of electrostatics treatment and solution ionic strengths. Surprisingly, the two villin headpiece variants exhibit similar aggregation behavior, despite the fact that their estimated aggregation propensities markedly differ. Importantly, regardless of the simulation protocol applied, wild-type villin headpiece consistently aggregates even under conditions at which it is experimentally known to be soluble. We demonstrate that aggregation is accompanied by a large decrease in the total potential energy, with not only hydrophobic, but also polar residues and backbone contributing substantially. The same effect is directly observed for two other major atomistic force fields (AMBER99SB-ILDN and CHARMM22-CMAP) as well as indirectly shown for additional two (AMBER94, OPLS-AAL), and is possibly due to a general overestimation of the potential energy of protein-protein interactions at the expense of water-water and water-protein interactions. Overall, our results suggest that current MD force fields may distort the picture of protein behavior in biologically relevant crowded environments.


Assuntos
Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/ultraestrutura , Modelos Químicos , Modelos Moleculares , Conformação Proteica , Dobramento de Proteína , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA