Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Allergy ; 77(7): 2053-2066, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34637150

RESUMO

BACKGROUND: People suffering from COVID-19 are typically considered non-infectious 14 days after diagnosis if symptoms have disappeared for at least 48 h. We describe three patients who independently acquired their infection. These three patients experienced mild COVID-19 and completely recovered symptomatically within 10 days, but remained PCR-positive in deep pharyngeal samples for at least 38 days. We attempted to isolate virus from pharyngeal swabs to investigate whether these patients still carried infectious virus. METHODS: Infectious virus was amplified in Vero E6 cells and characterized by electron microscopy and WGS. The immune response was investigated by ELISA and peptide arrays. RESULTS: In all three cases, infectious and replication-competent virus was isolated and amplified in Vero E6 cells. Virus replication was detected by RT-PCR and immunofluorescence microscopy. Electron microscopy confirmed the formation of intact SARS-CoV-2 particles. For a more detailed analysis, all three isolates were characterized by whole-genome sequencing (WGS). The sequence data revealed that the isolates belonged to the 20A or 20C clade, and two mutations in ORF8 were identified among other mutations that could be relevant for establishing a long-term infection. Characterization of the humoral immune response in comparison to patients that had fully recovered from mild COVID-19 revealed a lack of antibodies binding to sequential epitopes of the receptor-binding domain (RBD) for the long-term infected patients. CONCLUSION: Thus, a small portion of COVID-19 patients displays long-term infectivity and termination of quarantine periods after 14 days, without PCR-based testing, should be reconsidered critically.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Replicação Viral
2.
Artigo em Alemão | MEDLINE | ID: mdl-32995895

RESUMO

More than 250 million people worldwide suffer from chronic infection with hepatitis B virus (CHB). Chronic infection is associated with an increased risk of developing liver fibrosis/cirrhosis and hepatocellular carcinoma. Approximately 0.8-1 million people die annually as a result of CHB. One difficulty in the treatment of CHB is that the viral genome can persist for a very long time in the form of a minichromosome, and viral sequences can insert themselves into the host genome. Chronic infections are often characterized by functional defects of the cellular immune response, especially the T­cell response, which prevents the elimination of HBV-infected cells.Immunotherapies aiming to cure CHB therefore aim to restore the antiviral function of the cellular immune response. In this review, various current approaches to immunotherapy of CHB are described, in particular the use of genetically modified autologous T cells as a possible tool for therapy. Furthermore, the modulation of checkpoint inhibitors of the immune response, metabolic T cell therapies, and therapeutic vaccination to stimulate the T­cell response are summarized as immunotherapeutic strategies for treating CHB.


Assuntos
Hepatite B Crônica , Hepatite B , Neoplasias Hepáticas , Alemanha , Hepatite B Crônica/terapia , Humanos , Imunoterapia , Linfócitos T
3.
Antiviral Res ; 226: 105891, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38649071

RESUMO

Zoonoses such as ZIKV and SARS-CoV-2 pose a severe risk to global health. There is urgent need for broad antiviral strategies based on host-targets filling gaps between pathogen emergence and availability of therapeutic or preventive strategies. Significant reduction of pathogen titers decreases spread of infections and thereby ensures health systems not being overloaded and public life to continue. Based on previously observed interference with FGFR1/2-signaling dependent impact on interferon stimulated gene (ISG)-expression, we identified Pim kinases as promising druggable cellular target. We therefore focused on analyzing the potential of pan-Pim kinase inhibition to trigger a broad antiviral response. The pan-Pim kinase inhibitor AZD1208 exerted an extraordinarily high antiviral effect against various ZIKV isolates, SARS-CoV-2 and HBV. This was reflected by strong reduction in viral RNA, proteins and released infectious particles. Especially in case of SARS-CoV-2, AZD1208 led to a complete removal of viral traces in cells. Kinome-analysis revealed vast changes in kinase landscape upon AZD1208 treatment, especially for inflammation and the PI3K/Akt-pathway. For ZIKV, a clear correlation between antiviral effect and increase in ISG-expression was observed. Based on a cell culture model with impaired ISG-induction, activation of the PI3K-Akt-mTOR axis, leading to major changes in the endolysosomal equilibrium, was identified as second pillar of the antiviral effect triggered by AZD1208-dependent Pim kinase inhibition, also against HBV. We identified Pim-kinases as cellular target for a broad antiviral activity. The antiviral effect exerted by inhibition of Pim kinases is based on at least two pillars: innate immunity and modulation of the endolysosomal system.


Assuntos
Antivirais , Imunidade Inata , Proteínas Proto-Oncogênicas c-akt , Proteínas Proto-Oncogênicas c-pim-1 , SARS-CoV-2 , Transdução de Sinais , Serina-Treonina Quinases TOR , Humanos , Imunidade Inata/efeitos dos fármacos , Antivirais/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/imunologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Zika virus/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Animais , Vírus da Hepatite B/efeitos dos fármacos , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Linhagem Celular , COVID-19/imunologia , COVID-19/virologia , Tratamento Farmacológico da COVID-19 , Replicação Viral/efeitos dos fármacos , Compostos de Bifenilo , Tiazolidinas
4.
Cell Mol Gastroenterol Hepatol ; 15(1): 237-259, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36184032

RESUMO

BACKGROUND & AIMS: Hepatitis B virus (HBV) was identified as an enveloped DNA virus with a diameter of 42 nm. Multivesicular bodies play a central role in HBV egress and exosome biogenesis. In light of this, it was studied whether intact virions wrapped in exosomes are released by HBV-producing cells. METHODS: Robust methods for efficient separation of exosomes from virions were established. Exosomes were subjected to limited detergent treatment for release of viral particles. Electron microscopy of immunogold labeled ultrathin sections of purified exosomes was performed for characterization of exosomal HBV. Exosome formation/release was affected by inhibitors or Crispr/Cas-mediated gene silencing. Infectivity/uptake of exosomal HBV was investigated in susceptible and non-susceptible cells. RESULTS: Exosomes could be isolated from supernatants of HBV-producing cells, which are characterized by the presence of exosomal and HBV markers. These exosomal fractions could be separated from the fractions containing free virions. Limited detergent treatment of exosomes causes stepwise release of intact HBV virions and naked capsids. Inhibition of exosome morphogenesis impairs the release of exosome-wrapped HBV. Electron microscopy confirmed the presence of intact virions in exosomes. Moreover, the presence of large hepatitis B virus surface antigen on the surface of exosomes derived from HBV expressing cells was observed, which conferred exosome-encapsulated HBV initiating infection in susceptible cells in a , large hepatitis B virus surface antigen/Na+-taurocholate co-transporting polypeptide-dependent manner. The uptake of exosomal HBV with low efficiency was also observed in non-permissive cells. CONCLUSION: These data indicate that a fraction of intact HBV virions can be released as exosomes. This reveals a so far not described release pathway for HBV.


Assuntos
Exossomos , Hepatite B , Humanos , Detergentes/metabolismo , Vírion , Hepatite B/metabolismo , Vírus da Hepatite B/genética , Antígenos de Superfície/metabolismo
5.
Vaccines (Basel) ; 10(5)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35632552

RESUMO

Waning immunity against SARS-CoV-2 and the emergence of variants, especially of the most distant variant, Omicron, affect titers of neutralizing antibodies in the sera of vaccinated individuals. Thus, two vaccinations with the mRNA vaccine BNT162b fail to induce neutralizing antibodies against the Omicron variant. A first booster vaccination increases Omicron-RBD-binding IgG and IgA and neutralizing capacity. In comparison, the Wuhan isolate titers of the Omicron variant binding antibodies are 8.5 lower. After a third vaccination, induction of Omicron-RBD- and Wuhan-RBD-binding antibodies follows the same kinetic. Five to six months after the third vaccination, there are still Omicron-RBD-binding antibodies detectable, but 35.9 percent of the analyzed sera fail to neutralize the Omicron variant, while all sera efficiently neutralize the Delta isolate. In the case of the Wuhan-RBD, a significantly larger number of stable antigen-antibody complexes is formed than in Omicron-RBD. A fourth vaccination with mRNA-1273 temporarily restores levels of Omicron-, Delta- and Wuhan-specific antibodies. Comparing different booster strategies revealed that the breadth of the immune response is not affected by the vaccination regimen. Taken together, these data indicate that booster vaccinations (third and fourth dose) increase the breadth of the immune response, but there is a qualitative difference of antibodies with respect to the stability of antigen-antibody complexes and persistence of antibody titers.

6.
Viruses ; 14(2)2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35216003

RESUMO

In light of an increasing number of vaccinated and convalescent individuals, there is a major need for the development of robust methods for the quantification of neutralizing antibodies; although, a defined correlate of protection is still missing. Sera from hospitalized COVID-19 patients suffering or not suffering from acute respiratory distress syndrome (ARDS) were comparatively analyzed by plaque reduction neutralization test (PRNT) and pseudotype-based neutralization assays to quantify their neutralizing capacity. The two neutralization assays showed comparable data. In case of the non-ARDS sera, there was a distinct correlation between the data from the neutralization assays on the one hand, and enzyme-linked immune sorbent assay (ELISA), as well as biophysical analyses, on the other hand. As such, surface plasmon resonance (SPR)-based assays for quantification of binding antibodies or analysis of the stability of the antigen-antibody interaction and inhibition of syncytium formation, determined by cell fusion assays, were performed. In the case of ARDS sera, which are characterized by a significantly higher fraction of RBD-binding IgA antibodies, there is a clear correlation between the neutralization assays and the ELISA data. In contrast to this, a less clear correlation between the biophysical analyses on the one hand and ELISAs and neutralization assays on the other hand was observed, which might be explained by the heterogeneity of the antibodies. To conclude, for less complex immune sera-as in cases of non-ARDS sera-combinations of titer quantification by ELISA with inhibition of syncytium formation, SPR-based analysis of antibody binding, determination of the stability of the antigen-antibody complex, and competition of the RBD-ACE2 binding represent alternatives to the classic PRNT for analysis of the neutralizing potential of SARS-CoV-2-specific sera, without the requirement for a BSL3 facility.


Assuntos
Anticorpos Antivirais/sangue , Convalescença , Soros Imunes/análise , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/sangue , Glicoproteína da Espícula de Coronavírus/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Neutralizantes/imunologia , COVID-19/imunologia , Ensaio de Imunoadsorção Enzimática , Feminino , Hospitalização/estatística & dados numéricos , Humanos , Soros Imunes/imunologia , Imunidade Humoral , Masculino , Pessoa de Meia-Idade , Testes de Neutralização
7.
Vaccine ; 38(15): 3105-3120, 2020 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-32113806

RESUMO

There are currently about 257 million people suffering from chronic HBV infection worldwide. In many cases, an insufficient Tcell response is causative for establishment of a chronic infection. To ensure a robust cellular immune response and induction of neutralizing antibodies a novel vaccine platform based on modified cell-permeable HBV capsids was utilized. Cell permeability was achieved by fusion of the membrane-permeable TLM-peptide to HBV core monomers, assembling the capsids. Insertion of a Strep-tagIII into the spike tip domain that protrudes from the capsid surface enables flexible loading with antigens that are fused to streptavidin. In this study, HBV surface antigen-derived PreS1PreS2 domain, fused to monomeric streptavidin, served as cargo antigen. Binding between antigen and capsids was characterized by surface plasmon resonance spectroscopy, electron microscopy and density gradient centrifugation. Confocal immunofluorescence microscopy and in vivo imaging of immunized mice demonstrated membrane permeability of cargo-loaded carriers and spread of antigen over the whole organism. Immunization experiments of mice revealed a robust induction of a specific cellular immune response, leading to destruction of HBV-positive cells and induction of HBV-specific neutralizing antibodies. Membrane permeability of these carriers allows needle-free application of antigen-loaded capsids as evidenced by induction of an HBV-specific CTL response and HBV-specific B cell response after oral or transdermal vaccination. These data indicate that cell-permeable antigen carriers, based on HBV capsids and loaded with HBV antigen, have the capacity to induce a cellular and a neutralizing humoral immune response. In addition, cell permeability of the vaccine platform enables antigen transfer across several cell layers, that could allow oral or transdermal immunization.


Assuntos
Antígenos do Núcleo do Vírus da Hepatite B/imunologia , Antígenos de Superfície da Hepatite B/imunologia , Vacinas contra Hepatite B/administração & dosagem , Hepatite B Crônica , Imunidade Celular , Animais , Antígenos do Núcleo do Vírus da Hepatite B/administração & dosagem , Antígenos de Superfície da Hepatite B/administração & dosagem , Vacinas contra Hepatite B/imunologia , Hepatite B Crônica/prevenção & controle , Camundongos , Vacinação
8.
JCI Insight ; 5(22)2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33055418

RESUMO

Many mutation analyses of the HBV genome have been performed in the search for new prognostic markers. However, the Kozak sequence preceding precore was covered only infrequently in these analyses. In this study, the HBV core promoter/precore region was sequenced in serum samples from European inactive HBV carriers. Quadruple mutation GCAC1809-1812TTCT was found with a high prevalence of 42% in the Kozak sequence preceding precore among all HBV genotypes. GCAC1809-1812TTCT was strongly associated with coexistence of basal core promoter (BCP) double mutation A1762T/G1764A and lower HBV DNA levels. In vitro GCAC1809-1812TTCT lead to drastically diminished synthesis of pregenomic RNA (pgRNA), precore mRNA, core, HBsAg, and HBeAg. Calculation of the pgRNA secondary structure suggests a destabilization of the pgRNA structure by A1762T/G1764A that was compensated by GCAC1809-1812TTCT. In 125 patients with HBV-related cirrhosis, GCAC1809-1812TTCT was not detected. While a strong association of GCAC1809-1812TTCT with inactive carrier status was observed, BCP double mutation was strongly correlated with cirrhosis, but this was only observed in absence of GCAC1809-1812TTCT. In conclusion, our data reveal that GCAC1809-1812TTCT is highly prevalent in inactive carriers and acts as a compensatory mutation for BCP double mutation. GCAC1809-1812TTCT seems to be a biomarker of good prognosis in HBV infection.


Assuntos
Biomarcadores/análise , DNA Viral/genética , Antígenos de Superfície da Hepatite B/genética , Vírus da Hepatite B/genética , Hepatite B/complicações , Cirrose Hepática/epidemiologia , Mutação , Adulto , DNA Viral/análise , Europa (Continente)/epidemiologia , Feminino , Genótipo , Hepatite B/genética , Hepatite B/virologia , Vírus da Hepatite B/isolamento & purificação , Heterozigoto , Humanos , Cirrose Hepática/diagnóstico , Cirrose Hepática/virologia , Masculino , Pessoa de Meia-Idade , Regiões Promotoras Genéticas
9.
Burns ; 45(4): 876-890, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30559054

RESUMO

OBJECTIVE: Acceleration of wound healing promises advantages for patients and caregivers in reducing the burden of disease, avoiding complications such as wound infections, and improving the long-term outcome. However, medicines that can accelerate wound healing are lacking. The objective of this open, blindly evaluated, randomized, multicenter phase III study was to compare intra-individually the efficacy and tolerability of Oleogel-S10 with fatty gauze dressing versus Octenilin® wound gel with fatty gauze dressing in accelerating the healing of superficial partial thickness burn wounds. METHODS: Acute superficial partial thickness burn wounds in adults caused by fire, heat burn or scalding were divided into 2 halves and randomly assigned to treatment with Oleogel-S10 or Octenilin® wound gel. Photos for observer-blinded analysis of wound healing were taken at each wound dressing change. Percentages of reepithelialization were assessed at defined intervals. Efficacy and tolerability were evaluated based on a 5-point Likert scale. RESULTS: Of 61 patients that were enrolled, 57 received the allocated intervention and 48 completed treatment. The percentage of patients with earlier wound healing was significantly higher for Oleogel-S10 (85.7%, n=30) compared to Octenilin® wound gel (14.3%, n=5, p<0.0001). The mean intra-individual difference in time to wound closure was -1.0 day in favour of Oleogel-S10 (-1.4, -0.6; 95% CI, p<0.0001). Most investigators (87.0%) and patients (84.8%) evaluated the efficacy of Oleogel-S10 to be 'better' or 'much better' than that of Octenilin® wound gel. Long-term outcome 3 months and 12 months post injury was improved in some patients. CONCLUSIONS: Oleogel-S10 (Episalvan) significantly accelerated the healing of superficial partial thickness burn wounds. It was safe and well tolerated.


Assuntos
Queimaduras/tratamento farmacológico , Triterpenos/uso terapêutico , Cicatrização , Administração Cutânea , Adolescente , Adulto , Idoso , Bandagens , Feminino , Géis , Humanos , Masculino , Pessoa de Meia-Idade , Compostos Orgânicos/uso terapêutico , Reepitelização , Fatores de Tempo , Resultado do Tratamento , Adulto Jovem
10.
Burns ; 43(6): 1284-1294, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28400148

RESUMO

The clinical significance of timely re-epithelialization is obvious in burn care, since delayed wound closure is enhancing the risk of wound site infection and extensive scarring. Topical treatments that accelerate wound healing are urgently needed to reduce these sequelae. Evidence from preliminary studies suggests that betulin can accelerate the healing of different types of wounds, including second degree burns and split-thickness skin graft wounds. The goal of this combined study program consisting of two randomized phase III clinical trials in parallel is to evaluate whether a topical betulin gel (TBG) is accelerating re-epithelialization of split-thickness skin graft (STSG) donor site wounds compared to standard of care. Two parallel blindly evaluated, randomised, controlled, multicentre phase III clinical trials were performed in adults undergoing STSG surgery (EudraCT nos. 2012-003390-26 and 2012-000777-23). Donor site wounds were split into two equal halves and randomized 1:1 to standard of care (a non-adhesive moist wound dressing) or standard of care plus TBG consisting of 10% birch bark extract and 90% sunflower oil (Episalvan, Birken AG, Niefern-Oeschelbronn, Germany). The primary efficacy assessment was the intra-individual difference in time to wound closure assessed from digital photographs by three blinded experts. A total of 219 patients were included and treated in the two trials. Wounds closed faster with TBG than without it (15.3 vs. 16.5 days; mean intra-individual difference=-1.1 days [95% CI, -1.5 to -0.7]; p<0.0001). This agreed with unblinded direct clinical assessment (difference=-2.1 days [95% CI, -2.7 to -1.5]; p<0.0001). Adverse events possibly related to treatment were mild or moderate and mostly at the application site. TBG accelerates re-epithelialization of partial thickness wounds compared to the current standard of care, providing a well-tolerated contribution to burn care in practice.


Assuntos
Queimaduras/terapia , Géis/uso terapêutico , Reepitelização , Transplante de Pele , Ferida Cirúrgica/tratamento farmacológico , Triterpenos/uso terapêutico , Administração Cutânea , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento
11.
Proc Natl Acad Sci U S A ; 103(30): 11172-7, 2006 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-16837572

RESUMO

Although the exact etiology of Alzheimer's disease (AD) is a topic of debate, the consensus is that the accumulation of beta-amyloid (Abeta) peptides in the senile plaques is one of the hallmarks of the progression of the disease. The Abeta peptide is formed by the amyloidogenic cleavage of the amyloid precursor protein (APP) by beta- and gamma-secretases. The endocytic system has been implicated in the cleavages leading to the formation of Abeta. However, the identity of the intracellular compartment where the amyloidogenic secretases cleave and the mechanism by which the intracellularly generated Abeta is released into the extracellular milieu are not clear. Here, we show that beta-cleavage occurs in early endosomes followed by routing of Abeta to multivesicular bodies (MVBs) in HeLa and N2a cells. Subsequently, a minute fraction of Abeta peptides can be secreted from the cells in association with exosomes, intraluminal vesicles of MVBs that are released into the extracellular space as a result of fusion of MVBs with the plasma membrane. Exosomal proteins were found to accumulate in the plaques of AD patient brains, suggesting a role in the pathogenesis of AD.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/química , Núcleo Celular/metabolismo , Exorribonucleases/metabolismo , Adenoviridae/metabolismo , Animais , Encéfalo/patologia , Membrana Celular/metabolismo , Endocitose , Células HeLa , Humanos , Camundongos , Modelos Biológicos , Peptídeos/química
12.
Traffic ; 5(7): 544-59, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15180830

RESUMO

We have developed a model system in Caenorhabditis elegans to perform genetic and molecular analysis of peptidergic neurotransmission using green fluorescent protein (GFP)-tagged IDA-1. IDA-1 represents the nematode ortholog of the transmembrane proteins ICA512 and phogrin that are localized to dense core secretory vesicles (DCVs) of mammalian neuroendocrine tissues. IDA-1::GFP was expressed in a small subset of neurons and present in both axonal and dendritic extensions, where it was localized to small mobile vesicular elements that at the ultrastructural level corresponded to 50 nm electron-dense objects in the neuronal processes. The post-translational processing of IDA-1::GFP in transgenic worms was dependent on the neuropeptide proprotein convertase EGL-3, indicating that the protein was efficiently targeted to the peptidergic secretory pathway. Time-lapse epifluorescence microscopy of IDA-1::GFP revealed that DCVs moved in a saltatory and bidirectional manner. DCV velocity profiles exhibited multiple distinct peaks, suggesting the participation of multiple molecular motors with distinct properties. Differences between velocity profiles for axonal and dendritic processes furthermore suggested a polarized distribution of the molecular transport machinery. Study of a number of candidate mutants identified the kinesin UNC-104 (KIF1A) as the microtubule motor that is specifically responsible for anterograde axonal transport of DCVs at velocities of 1.6 microm/s-2.7 microm/s.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Neurônios/metabolismo , Animais , Animais Geneticamente Modificados , Autoantígenos , Axônios/metabolismo , Transporte Biológico , Western Blotting , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Citosol/metabolismo , Dendritos/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Cinesinas/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/farmacologia , Microscopia de Fluorescência , Microscopia Imunoeletrônica , Modelos Biológicos , Mutação , Proteínas do Tecido Nervoso/genética , Estrutura Terciária de Proteína , Proteínas Tirosina Fosfatases/metabolismo , Proteínas Tirosina Fosfatases/farmacologia , Proteínas Tirosina Fosfatases Classe 8 Semelhantes a Receptores , Fatores de Tempo , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA