Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Neurol ; 30(2): 413-433, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36314485

RESUMO

BACKGROUND AND PURPOSE: The aim of this study was to assess the neurological complications of SARS-CoV-2 infection and compare phenotypes and outcomes in infected patients with and without selected neurological manifestations. METHODS: The data source was a registry established by the European Academy of Neurology during the first wave of the COVID-19 pandemic. Neurologists collected data on patients with COVID-19 seen as in- and outpatients and in emergency rooms in 23 European and seven non-European countries. Prospective and retrospective data included patient demographics, lifestyle habits, comorbidities, main COVID-19 complications, hospital and intensive care unit admissions, diagnostic tests, and outcome. Acute/subacute selected neurological manifestations in patients with COVID-19 were analysed, comparing individuals with and without each condition for several risk factors. RESULTS: By July 31, 2021, 1523 patients (758 men, 756 women, and nine intersex/unknown, aged 16-101 years) were registered. Neurological manifestations were diagnosed in 1213 infected patients (79.6%). At study entry, 978 patients (64.2%) had one or more chronic general or neurological comorbidities. Predominant acute/subacute neurological manifestations were cognitive dysfunction (N = 449, 29.5%), stroke (N = 392, 25.7%), sleep-wake disturbances (N = 250, 16.4%), dysautonomia (N = 224, 14.7%), peripheral neuropathy (N = 145, 9.5%), movement disorders (N = 142, 9.3%), ataxia (N = 134, 8.8%), and seizures (N = 126, 8.3%). These manifestations tended to differ with regard to age, general and neurological comorbidities, infection severity and non-neurological manifestations, extent of association with other acute/subacute neurological manifestations, and outcome. CONCLUSIONS: Patients with COVID-19 and neurological manifestations present with distinct phenotypes. Differences in age, general and neurological comorbidities, and infection severity characterize the various neurological manifestations of COVID-19.


Assuntos
COVID-19 , Doenças do Sistema Nervoso , Feminino , Humanos , COVID-19/complicações , COVID-19/epidemiologia , Estudos Retrospectivos , SARS-CoV-2 , Pandemias , Estudos Prospectivos , Doenças do Sistema Nervoso/epidemiologia , Doenças do Sistema Nervoso/etiologia , Doenças do Sistema Nervoso/diagnóstico , Convulsões/complicações
2.
Biochemistry (Mosc) ; 88(4): 551-563, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37080940

RESUMO

Demyelinating diseases of the central nervous system are caused by an autoimmune attack on the myelin sheath surrounding axons. Myelin structural proteins become antigenic, leading to the development of myelin lesions. The use of highly specialized laboratory diagnostic techniques for identification of specific antibodies directed against myelin components can significantly improve diagnostic approaches. Myelin oligodendrocyte glycoprotein (MOG) antibody-associated disease (MOGAD) currently includes demyelinating syndromes with known antigens. Based on the demonstrated pathogenic role of human IgG against MOG, MOGAD was classified as a distinct nosological entity. However, generation of multiple MOG isoforms by alternative splicing hinders antigen detection even with the most advanced immunofluorescence techniques. On the other hand, MOG conformational changes ensure the structural integrity of other myelin proteins and maintain human-specific mechanisms of immune autotolerance.


Assuntos
Autoantígenos , Doenças Desmielinizantes , Humanos , Autoanticorpos , Sistema Nervoso Central , Doenças Desmielinizantes/diagnóstico , Imunoglobulina G , Glicoproteína Mielina-Oligodendrócito
3.
Int J Mol Sci ; 24(9)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37176158

RESUMO

Epilepsy is a challenging brain disorder that is often difficult to treat with conventional therapies. The gut microbiota has been shown to play an important role in the development of neuropsychiatric disorders, including epilepsy. In this study, the effects of Bifidobacterium longum, a probiotic, on inflammation, neuronal degeneration, and behavior are evaluated in a lithium-pilocarpine model of temporal lobe epilepsy (TLE) induced in young adult rats. B. longum was administered orally at a dose of 109 CFU/rat for 30 days after pilocarpine injection. The results show that B. longum treatment has beneficial effects on the TLE-induced changes in anxiety levels, neuronal death in the amygdala, and body weight recovery. In addition, B. longum increased the expression of anti-inflammatory and neuroprotective genes, such as Il1rn and Pparg. However, the probiotic had little effect on TLE-induced astrogliosis and microgliosis and did not reduce neuronal death in the hippocampus and temporal cortex. The study suggests that B. longum may have a beneficial effect on TLE and may provide valuable insights into the role of gut bacteria in epileptogenesis. In addition, the results show that B. longum may be a promising drug for the comprehensive treatment of epilepsy.


Assuntos
Bifidobacterium longum , Epilepsia do Lobo Temporal , Epilepsia , Probióticos , Ratos , Animais , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/tratamento farmacológico , Epilepsia do Lobo Temporal/metabolismo , Pilocarpina/efeitos adversos , Lítio/farmacologia , Hipocampo/metabolismo , Epilepsia/metabolismo , Probióticos/farmacologia , Modelos Animais de Doenças
4.
Int J Mol Sci ; 23(5)2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35269897

RESUMO

Preventing epileptogenesis in people at risk is an unmet medical need. Metabotropic glutamate receptors (mGluRs) are promising targets for such therapy. However, drugs acting on mGluRs are not used in the clinic due to limited knowledge of the involvement of mGluRs in epileptogenesis. This study aimed to analyze the changes in gene expression of mGluR subtypes (1-5, 7, 8) in various rat brain regions in the latent and chronic phases of a lithium-pilocarpine model of epilepsy. For this study, multiplex test systems were selected and optimized to analyze mGluR gene expression using RT-qPCR. Region- and phase-specific changes in expression were revealed. During the latent phase, mGluR5 mRNA levels were increased in the dorsal and ventral hippocampus, and expression of group III genes was decreased in the hippocampus and temporal cortex, which could contribute to epileptogenesis. Most of the changes in expression detected in the latent stage were absent in the chronic stage, but mGluR8 mRNA production remained reduced in the hippocampus. Moreover, we found that gene expression of group II mGluRs was altered only in the chronic phase. The study deepened our understanding of the mechanisms of epileptogenesis and suggested that agonists of group III mGluRs are the most promising targets for preventing epilepsy.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Animais , Encéfalo/metabolismo , Epilepsia/metabolismo , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/genética , Epilepsia do Lobo Temporal/metabolismo , Expressão Gênica , Hipocampo/metabolismo , Humanos , Lítio/farmacologia , Pilocarpina , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos
5.
Int J Mol Sci ; 23(1)2022 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-35008924

RESUMO

Metabotropic glutamate receptors (mGluRs) are expressed predominantly on neurons and glial cells and are involved in the modulation of a wide range of signal transduction cascades. Therefore, different subtypes of mGluRs are considered a promising target for the treatment of various brain diseases. Previous studies have demonstrated the seizure-induced upregulation of mGluR5; however, its functional significance is still unclear. In the present study, we aimed to clarify the effect of treatment with the selective mGluR5 antagonist 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]-pyridine (MTEP) on epileptogenesis and behavioral impairments in rats using the lithium-pilocarpine model. We found that the administration of MTEP during the latent phase of the model did not improve survival, prevent the development of epilepsy, or attenuate its manifestations in rats. However, MTEP treatment completely prevented neuronal loss and partially attenuated astrogliosis in the hippocampus. An increase in excitatory amino acid transporter 2 expression, which has been detected in treated rats, may prevent excitotoxicity and be a potential mechanism of neuroprotection. We also found that MTEP administration did not prevent the behavioral comorbidities such as depressive-like behavior, motor hyperactivity, reduction of exploratory behavior, and cognitive impairments typical in the lithium-pilocarpine model. Thus, despite the distinct neuroprotective effect, the MTEP treatment was ineffective in preventing epilepsy.


Assuntos
Epilepsia/metabolismo , Hipocampo/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Piridinas/farmacologia , Convulsões , Tiazóis/farmacologia , Animais , Comportamento Animal , Modelos Animais de Doenças , Lítio , Masculino , Neurônios/efeitos dos fármacos , Pilocarpina , Ratos , Ratos Wistar , Receptor de Glutamato Metabotrópico 5/antagonistas & inibidores
6.
Int J Mol Sci ; 23(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36362260

RESUMO

Data on the long-term consequences of a single episode of generalized seizures in infants are inconsistent. In this study, we examined the effects of pentylenetetrazole-induced generalized seizures in three-week-old rats. One month after the seizures, we detected a moderate neuronal loss in several hippocampal regions: CA1, CA3, and hilus, but not in the dentate gyrus. In addition, long-term synaptic potentiation (LTP) was impaired. We also found that the mechanism of plasticity induction was altered: additional activation of metabotropic glutamate receptors (mGluR1) is required for LTP induction in experimental rats. This disturbance of the plasticity induction mechanism is likely due to the greater involvement of perisynaptic NMDA receptors compared to receptors located in the core part of the postsynaptic density. This hypothesis is supported by experiments with selective blockades of core-located NMDA receptors by the use-dependent blocker MK-801. MK-801 had no effect on LTP induction in experimental rats and suppressed LTP in control animals. The weakening of the function of core-located NMDA receptors may be due to the disturbed clearance of glutamate from the synaptic cleft since the distribution of the astrocytic glutamate transporter EAAT2 in experimental animals was found to be altered.


Assuntos
Pentilenotetrazol , Receptores de N-Metil-D-Aspartato , Animais , Ratos , Maleato de Dizocilpina , Hipocampo/metabolismo , Plasticidade Neuronal , Pentilenotetrazol/farmacologia , Receptores de N-Metil-D-Aspartato/metabolismo , Convulsões/induzido quimicamente
7.
Med Res Rev ; 41(5): 2634-2655, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-32638429

RESUMO

Motor neuron disorders are a group of neurodegenerative diseases characterized by muscle weakness, loss of ambulation, respiratory insufficiency, leading to an early death. Spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis are the most common and fatal motor neuron diseases. The last 3 years became very successful for novel gene therapy approaches in SMA in infants. Two innovative drugs-nusinersen (Spinraza) and onasemnogene abeparvovec (Zolgensma) have been approved by health authorities. The numerous molecular and genetic overlaps between different neurodegenerative diseases are of great importance in the development of innovative therapeutic strategies, including viral vector therapy and RNA modulating approaches.


Assuntos
Esclerose Lateral Amiotrófica , Atrofia Muscular Espinal , Doenças Neurodegenerativas , Terapia Genética , Vetores Genéticos , Humanos , Lactente , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/terapia
8.
Biochem Biophys Res Commun ; 569: 174-178, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34252589

RESUMO

Adenosine deaminase-dependent RNA editing is a widespread universal mechanism of posttranscriptional gene function modulation. Changes in RNA editing level may contribute to various physiological and pathological processes. In the α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) glutamate receptor GluA2 subunit, A-I editing in the Q607R site leads to dramatic changes in function, making the receptor channel calcium-impermeable. A standard approach for quantifying (un)edited RNAs is based on endpoint PCR (Sanger sequencing or restriction analysis), a time-consuming and semiquantitative method. We aimed to develop RT-qPCR assays to quantify rat Q607R (A-I) edited/unedited mRNA in samples in the present work. Based on self-probing PCR detection chemistry, described initially for detecting short DNA fragments, we designed and optimised RT-qPCR assays to quantify Q607R (un)edited mRNA. We used self-probing primer PCR technology for mRNA quantification for the first time. Using a novel assay, we confirmed that Q607R GluA2 mRNA editing was increased in 14-day- (P14) or 21-day-old (P21) postnatal brain tissue (hippocampus) compared to the embryonic brain (whole brains at E20) in Wistar rats. Q607R unedited GluA2 mRNA was detectable by our assay in the cDNA of mature brain tissue compared to that derived through classical methods. Thus, self-probing primer PCR detection chemistry is an easy-to-use approach for RT-qPCR analysis of RNA editing.


Assuntos
Expressão Gênica , Hipocampo/metabolismo , Edição de RNA , RNA Mensageiro/genética , Receptores de AMPA/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Sequência de Aminoácidos , Animais , Sequência de Bases , Masculino , Sondas de Ácido Nucleico/genética , Polimorfismo de Nucleotídeo Único , RNA Mensageiro/metabolismo , Ratos Wistar , Reprodutibilidade dos Testes , Fatores de Tempo
9.
Biochemistry (Mosc) ; 86(6): 761-772, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34225597

RESUMO

According to the two-hit hypothesis of psychoneuropathology formation, infectious diseases and other pathological conditions occurring during the critical periods of early ontogenesis disrupt normal brain development and increase its susceptibility to stress experienced in adolescence and adulthood. It is believed that these disorders are associated with changes in the functional activity of the glutamatergic system in the hippocampus. Here, we studied expression of NMDA (GluN1, GluN2a, GluN2b) and AMPA (GluA1, GluA2) glutamate receptor subunits, as well as glutamate transporter EAAT2, in the ventral and dorsal regions of the hippocampus of rats injected with LPS during the third postnatal week and then subjected to predator stress (contact with a python) in adulthood. The tests were performed 25 days after the stress. It was found that stress altered protein expression in the ventral, but not in the dorsal hippocampus. Non-stressed LPS-treated rats displayed lower levels of the GluN2b protein in the ventral hippocampus vs. control animals. Stress significantly increased the content of GluN2b in the LPS-treated rats, but not in the control animals. Stress also affected differently the exploratory behavior of LPS-injected and control rats. Compared to the non-stressed animals, stressed control rats demonstrated a higher locomotor activity during the 1st min of the open field test, while the stressed LPS-injected rats displayed lower locomotor activity than the non-stressed rats. In addition, LPS-treated stressed and non-stressed rats spent more time in the open arms of the elevated plus maze and demonstrated reduced blood levels of corticosterone. To summarize the results of our study, exposure to bacterial LPS in the early postnatal ontogenesis affects the pattern of stress-induced changes in the behavior and hippocampal expression of genes coding for ionotropic glutamate receptor subunits after psychogenic trauma suffered in adulthood.


Assuntos
Comportamento Animal , Hipocampo/metabolismo , Lipopolissacarídeos/toxicidade , Receptores Ionotrópicos de Glutamato/genética , Estresse Psicológico/metabolismo , Animais , Animais Recém-Nascidos , Regulação da Expressão Gênica , Hipocampo/crescimento & desenvolvimento , Masculino , Ratos , Ratos Wistar , Estresse Psicológico/genética
10.
Int J Mol Sci ; 22(16)2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34445137

RESUMO

Disrupted glutamate clearance in the synaptic cleft leads to synaptic dysfunction and neurological diseases. Decreased glutamate removal from the synaptic cleft is known to cause excitotoxicity. Data on the physiological effects of increased glutamate clearance are contradictory. This study investigated the consequences of ceftriaxone (CTX), an enhancer of glutamate transporter 1 expression, treatment on long-term synaptic potentiation (LTP) in the hippocampus of young rats. In this study, 5-day administration of CTX (200 mg/kg) significantly weakened LTP in CA3-CA1 synapses. As shown by electrophysiological recordings, LTP attenuation was associated with weakening of N-Methyl-D-aspartate receptor (NMDAR)-dependent signaling in synapses. However, PCR analysis did not show downregulation of NMDAR subunits or changes in the expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) subunits. We assume that extracellular burst stimulation activates fewer synapses in CTX-treated animals because increased glutamate reuptake results in reduced spillover, and neighboring synapses do not participate in neurotransmission. Attenuation of LTP was not accompanied by noticeable behavioral changes in the CTX group, with no behavioral abnormalities observed in the open field test or Morris water maze test. Thus, our experiments show that increased glutamate clearance can impair long-term synaptic plasticity and that this phenomenon can be considered a potential side effect of CTX treatment.


Assuntos
Ceftriaxona/farmacologia , Hipocampo/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Animais , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Hipocampo/metabolismo , Masculino , Plasticidade Neuronal/efeitos dos fármacos , Ratos , Ratos Wistar , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/metabolismo
11.
Int J Mol Sci ; 21(17)2020 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-32872428

RESUMO

Effective and versatile screening of the peptide ligands capable of selectively binding to diverse receptors is in high demand for the state-of-the-art technologies in life sciences, including probing of specificity of the cell surface receptors and drug development. Complex microenvironment and structure of the surface receptors significantly reduce the possibility to determine their specificity, especially when in vitro conditions are utilized. Previously, we designed a publicly available platform for the ultra-high-throughput screening (uHTS) of the specificity of surface-exposed receptors of the living eukaryotic cells, which was done by consolidating the phage display and flow cytometry techniques. Here, we significantly improved this methodology and designed the fADL-1e-based phage vectors that do not require a helper hyperphage for the virion assembly. The enhanced screening procedure was tested on soluble human leukocyte antigen (HLA) class II molecules and transgenic antigen-specific B cells that express recombinant lymphoid B-cell receptor (BCR). Our data suggest that the improved vector system may be successfully used for the comprehensive search of the receptor ligands in either cell-based or surface-immobilized assays.


Assuntos
Técnicas de Visualização da Superfície Celular/métodos , Antígenos de Histocompatibilidade Classe II/análise , Receptores de Antígenos de Linfócitos B/análise , Bacteriófago M13/genética , Linhagem Celular , Antígenos de Histocompatibilidade Classe II/genética , Humanos , Ligantes , Receptores de Antígenos de Linfócitos B/genética
12.
Int J Mol Sci ; 20(23)2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31766528

RESUMO

Epilepsy is a common neurological disorder. Despite the availability of a wide range of antiepileptic drugs, these are unsuccessful in preventing seizures in 20-30% of patients. Therefore, new pharmacological strategies are urgently required to control seizures. Modulation of glutamate uptake may have potential in the treatment of pharmacoresistant forms of epilepsy. Previous research showed that the antibiotic ceftriaxone (CTX) increased the expression and functional activity of excitatory amino acid transporter 2 (EAAT2) and exerted considerable anticonvulsant effects. However, other studies did not confirm a significant anticonvulsant effect of CTX administration. We investigated the impacts of CTX treatment on EAAT expression and glutamatergic neurotransmission, as well its anticonvulsant action, in young male Wistar rats. As shown by a quantitative real-time polymerase chain reaction (qPCR) assay and a Western blot analysis, the mRNA but not the protein level of EAAT2 increased in the hippocampus following CTX treatment. Repetitive CTX administration had only a mild anticonvulsant effect on pentylenetetrazol (PTZ)-induced convulsions in a maximal electroshock threshold test (MEST). CTX treatment did not affect the glutamatergic neurotransmission, including synaptic efficacy, short-term facilitation, or the summation of excitatory postsynaptic potentials (EPSPs) in the hippocampus and temporal cortex. However, it decreased the field EPSP (fEPSP) amplitudes evoked by intense electrical stimulation. In conclusion, in young rats, CTX treatment did not induce overexpression of EAAT2, therefore exerting only a weak antiseizure effect. Our data provide new insight into the effects of modulation of EAAT2 expression on brain functioning.


Assuntos
Ceftriaxona/farmacologia , Transportador 2 de Aminoácido Excitatório/genética , Expressão Gênica/efeitos dos fármacos , Convulsões/tratamento farmacológico , Transmissão Sináptica/efeitos dos fármacos , Animais , Anticonvulsivantes/farmacologia , Epilepsia/tratamento farmacológico , Epilepsia/genética , Epilepsia/fisiopatologia , Transportador 2 de Aminoácido Excitatório/metabolismo , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Potenciais Pós-Sinápticos Excitadores/fisiologia , Ácido Glutâmico/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Masculino , Ratos Wistar , Convulsões/genética , Convulsões/fisiopatologia , Transmissão Sináptica/genética , Transmissão Sináptica/fisiologia , Lobo Temporal/efeitos dos fármacos , Lobo Temporal/metabolismo , Lobo Temporal/fisiopatologia
13.
Immunology ; 153(2): 133-144, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29080364

RESUMO

For understanding the rules and laws of adaptive immunity, high-throughput profiling of T-cell receptor (TCR) repertoires becomes a powerful tool. The structure of TCR repertoires is instructive even before the antigen specificity of each particular receptor becomes available. It embodies information about the thymic and peripheral selection of T cells; the readiness of an adaptive immunity to withstand new challenges; the character, magnitude and memory of immune responses; and the aetiological and functional proximity of T-cell subsets. Here, we describe our current analytical approaches for the comparative analysis of murine TCR repertoires, and show several examples of how these approaches can be applied for particular experimental settings. We analyse the efficiency of different metrics used for estimation of repertoire diversity, repertoire overlap, V-gene and J-gene segments usage similarity, and amino acid composition of CDR3. We discuss basic differences of these metrics and their advantages and limitations in different experimental models, and we provide guidelines for choosing an efficient way to lead a comparative analysis of TCR repertoires. Applied to the various known and newly developed mouse models, such analysis should allow us to disentangle multiple sophisticated puzzles in adaptive immunity.


Assuntos
Regiões Determinantes de Complementaridade/genética , Regiões Determinantes de Complementaridade/imunologia , Imunidade Celular/fisiologia , Subpopulações de Linfócitos T/imunologia , Animais , Camundongos , Subpopulações de Linfócitos T/citologia
14.
Muscle Nerve ; 51(1): 125-31, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25049055

RESUMO

INTRODUCTION: Amyotrophic lateral sclerosis (ALS) is a set of disorders associated with preferential degeneration of both upper and lower motor neurons. Navigated transcranial magnetic stimulation (nTMS) is a tool used to perform noninvasive functional brain mapping. We aimed to assess function of upper motor neurons in ALS. METHODS: nTMS was performed on 30 patients with ALS (mean age 54.4 ± 12.1 years) and 24 healthy volunteers (mean age 32.7 ± 13.3 years). RESULTS: The resting motor threshold (MT) was significantly higher in ALS patients compared with controls (P < 0.001). The mean map areas were smaller in patients with ALS than in healthy individuals, although some patients with short disease duration had extended maps. CONCLUSIONS: Motor area maps serve as markers of upper motor neuron damage in ALS. Further research may elucidate the pathogenic mechanisms of the neurodegenerative process and aid in development of diagnostic and prognostic markers.


Assuntos
Esclerose Lateral Amiotrófica/fisiopatologia , Mapeamento Encefálico , Doença dos Neurônios Motores/diagnóstico , Adulto , Idoso , Esclerose Lateral Amiotrófica/complicações , Eletromiografia , Potencial Evocado Motor/fisiologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Doença dos Neurônios Motores/etiologia , Estatísticas não Paramétricas , Estimulação Magnética Transcraniana
15.
Biomedicines ; 12(5)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38791067

RESUMO

Reverse transcription followed by quantitative polymerase chain reaction (RT-qPCR) is a commonly used tool for gene expression analysis. The selection of stably expressed reference genes is required for accurate normalization. The aim of this study was to identify the optimal reference genes for RT-qPCR normalization in various brain regions of rats at different stages of the lithium-pilocarpine model of acquired epilepsy. We tested the expression stability of nine housekeeping genes commonly used as reference genes in brain research: Actb, Gapdh, B2m, Rpl13a, Sdha, Ppia, Hprt1, Pgk1, and Ywhaz. Based on four standard algorithms (geNorm, NormFinder, BestKeeper, and comparative delta-Ct), we found that after pilocarpine-induced status epilepticus, the stability of the tested reference genes varied significantly between brain regions and depended on time after epileptogenesis induction (3 and 7 days in the latent phase, and 2 months in the chronic phase of the model). Pgk1 and Ywhaz were the most stable, while Actb, Sdha, and B2m demonstrated the lowest stability in the analyzed brain areas. We revealed time- and region-specific changes in the mRNA expression of the housekeeping genes B2m, Actb, Sdha, Rpl13a, Gapdh, Hprt1, and Sdha. These changes were more pronounced in the hippocampal region during the latent phase of the model and are thought to be related to epileptogenesis. Thus, RT-qPCR analysis of mRNA expression in acquired epilepsy models requires careful selection of reference genes depending on the brain region and time of analysis. For the time course study of epileptogenesis in the rat lithium-pilocarpine model, we recommend the use of the Pgk1 and Ywhaz genes.

16.
Cells ; 12(2)2023 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-36672249

RESUMO

Antigen presentation by major histocompatibility complex class II (MHC-II) molecules is crucial for eliciting an efficient immune response by CD4+ T cells and maintaining self-antigen tolerance. Some MHC-II alleles are known to be positively or negatively associated with the risk of the development of different autoimmune diseases (ADs), including those characterized by the emergence of autoreactive T cells. Apparently, the MHC-II presentation of self-antigens contributes to the autoimmune T cell response, initiated through a breakdown of central tolerance to self-antigens in the thymus. The appearance of autoreactive T cell might be the result of (i) the unusual interaction between T cell receptors (TCRs) and self-antigens presented on MHC-II; (ii) the posttranslational modifications (PTMs) of self-antigens; (iii) direct loading of the self-antigen to classical MHC-II without additional nonclassical MHC assistance; (iv) the proinflammatory environment effect on MHC-II expression and antigen presentation; and (v) molecular mimicry between foreign and self-antigens. The peculiarities of the processes involved in the MHC-II-mediated presentation may have crucial importance in the elucidation of the mechanisms of triggering and developing ADs as well as for clarification on the protective effect of MHC-II alleles that are negatively associated with ADs.


Assuntos
Doenças Autoimunes , Autoimunidade , Humanos , Linfócitos T CD4-Positivos , Antígenos de Histocompatibilidade Classe II/metabolismo , Apresentação de Antígeno , Autoantígenos/metabolismo
17.
Front Bioeng Biotechnol ; 11: 1341685, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38304104

RESUMO

The identification of low-frequency antigen-specific CD4+ T cells is crucial for effective immunomonitoring across various diseases. However, this task still encounters experimental challenges necessitating the implementation of enrichment procedures. While existing antigen-specific expansion technologies predominantly concentrate on the enrichment of CD8+ T cells, advancements in methods targeting CD4+ T cells have been limited. In this study, we report a technique that harnesses antigen-presenting extracellular vesicles (EVs) for stimulation and expansion of antigen-specific CD4+ T cells. EVs are derived from a genetically modified HeLa cell line designed to emulate professional antigen-presenting cells (APCs) by expressing key costimulatory molecules CD80 and specific peptide-MHC-II complexes (pMHCs). Our results demonstrate the beneficial potent stimulatory capacity of EVs in activating both immortalized and isolated human CD4+ T cells from peripheral blood mononuclear cells (PBMCs). Our technique successfully expands low-frequency influenza-specific CD4+ T cells from healthy individuals. In summary, the elaborated methodology represents a streamlined and efficient approach for the detection and expansion of antigen-specific CD4+ T cells, presenting a valuable alternative to existing antigen-specific T-cell expansion protocols.

18.
FASEB J ; 25(12): 4211-21, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21859892

RESUMO

Multiple sclerosis (MS) is a widespread neurodegenerative autoimmune disease with unknown etiology. It is increasingly evident that, together with pathogenic T cells, autoreactive B cells are among the major players in MS development. The analysis of myelin neuroantigen-specific antibody repertoires and their possible cross-reactivity against environmental antigens, including viral proteins, could shed light on the mechanism of MS induction and progression. A phage display library of single-chain variable fragments (scFvs) was constructed from blood lymphocytes of patients with MS as a potential source of representative MS autoantibodies. Structural alignment of 13 clones selected toward myelin basic protein (MBP), one of the major myelin antigens, showed high homology within variable regions with cerebrospinal fluid MS-associated antibodies as well as with antibodies toward Epstein-Barr latent membrane protein 1 (LMP1). Three scFv clones showed pronounced specificity to MBP fragments 65-92 and 130-156, similar to the serum MS antibodies. One of these clones, designated E2, in both scFv and full-size human antibody constructs, was shown to react with both MBP and LMP1 proteins in vitro, suggesting natural cross-reactivity. Thus, antibodies induced against LMP1 during Epstein-Barr virus infection might act as inflammatory trigger by reacting with MBP, suggesting molecular mimicry in the mechanism of MS pathogenesis.


Assuntos
Antígenos Virais/imunologia , Autoanticorpos/imunologia , Herpesvirus Humano 4/imunologia , Esclerose Múltipla Recidivante-Remitente/imunologia , Esclerose Múltipla Recidivante-Remitente/virologia , Proteína Básica da Mielina/imunologia , Biblioteca de Peptídeos , Adulto , Idoso , Diversidade de Anticorpos , Antígenos Virais/genética , Autoanticorpos/genética , Reações Cruzadas , Humanos , Pessoa de Meia-Idade , Mimetismo Molecular , Esclerose Múltipla Recidivante-Remitente/etiologia , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/imunologia , Homologia Estrutural de Proteína , Proteínas da Matriz Viral/imunologia , Adulto Jovem
19.
Neural Regen Res ; 17(1): 65-73, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34100429

RESUMO

Amyotrophic lateral sclerosis is a fatal neurodegenerative disease characterized by progressive muscle wasting, breathing and swallowing difficulties resulting in patient's death in two to five years after disease onset. In amyotrophic lateral sclerosis, both upper and lower motor neurons of the corticospinal tracts are involved in the process of neurodegeneration, accounting for great clinical heterogeneity of the disease. Clinical phenotype has great impact on the pattern and rate of amyotrophic lateral sclerosis progression and overall survival prognosis. Creating more homogenous patient groups in order to study the effects of drug agents on specific manifestations of the disease is a challenging issue in amyotrophic lateral sclerosis clinical trials. Since amyotrophic lateral sclerosis has low incidence rates, conduction of multicenter trials requires certain standardized approaches to disease diagnosis and staging. This review focuses on the current approaches in amyotrophic lateral sclerosis classification and staging system based on clinical examination and additional instrumental methods, highlighting the role of upper and lower motor neuron involvement in different phenotypes of the disease. We demonstrate that both clinical and instrumental findings can be useful in evaluating severity of upper motor neuron and lower motor neuron involvement and predicting the following course of the disease. Addressing disease heterogeneity in amyotrophic lateral sclerosis clinical trials could lead to study designs that will assess drug efficacy in specific patient groups, based on the disease pathophysiology and spatiotemporal pattern. Although clinical evaluation can be a sufficient screening method for dividing amyotrophic lateral sclerosis patients into clinical subgroups, we provide proof that instrumental studies could provide valuable insights in the disease pathology.

20.
Curr Drug Saf ; 17(4): 319-326, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34951579

RESUMO

AIMS: The study aims to raise medical specialists' awareness regarding the severity of possible complications of levamisole administration, and demonstrate the role of accurate medical history collection in a differential diagnosis. BACKGROUND: Levamisole, an anthelmintic drug with immunomodulatory effects, has long been used worldwide till the early 2000s, when its association with demyelinating leukoencephalopathy was established. However, in the developing countries, it is still widely used for the prevention and treatment of helminthic invasion in humans. The actual prevalence of levamisole-induced multiple inflammatory leukoencephalopathy (LEV-induced MIL) in Russia remains unknown, and therefore, the study of its frequency and characteristics is indisputably important. OBJECTIVES: The objective of this study is to determine the clinical features and MRI findings of levamisole- induced MIL in the Russian population, and to analyse the frequency of diagnostic errors at the initial assessment. METHODS: A single-center retrospective analysis of total 30 patients who were diagnosed with LEV- induced MIL and attended the Research Center of Neurology was conducted. Inclusion criteria were 1) clinically: acute or subacute polysymptomatic onset of neurological disturbances, 2) MRI: multifocal demyelinating lesion with no evidence of dissemination in time, 3) anamnestic data: levamisole exposure from 2 to 8 weeks before symptoms onset as well as monophasic disease course (absence of relapses according to follow up assessments up to 3 years). RESULTS: Clinically, presentation with constitutional symptoms including headache, fever, fatigue and myalgia, focal motor disturbances and dysarthria prevailed in our cohort. On the brain MRI, multiple foci of demyelination with simultaneous gadolinium enhancement were observed. The link between neurological symptoms and levamisole intake has often been detected only during follow- up assessments. Patients were most often misdiagnosed with acute disseminated encephalomyelitis, stroke and multiple sclerosis. In most cases, LEV-induced MIL was successfully treated with intravenous corticosteroids and/or plasma exchange (PLEX), however, residual neurologic symptoms were preserved in some patients. Additionally, two detailed clinical cases of patients being initially misdiagnosed are presented in the article. CONCLUSION: The differential diagnosis remains difficult for suspected cases of LEV-induced MIL that could lead to delayed therapy initiation, and consequently incomplete recovery. Growing evidence suggests that a single administration of levamisole even in low doses might potentially lead to severe neurological deficit or death. Therefore, changes in medication management policies are required in order to prevent the uncontrolled use of levamisole.


Assuntos
Leucoencefalopatias , Leucoencefalopatia Multifocal Progressiva , Meios de Contraste/efeitos adversos , Gadolínio/efeitos adversos , Humanos , Leucoencefalopatias/diagnóstico , Leucoencefalopatias/diagnóstico por imagem , Leucoencefalopatia Multifocal Progressiva/induzido quimicamente , Leucoencefalopatia Multifocal Progressiva/diagnóstico , Leucoencefalopatia Multifocal Progressiva/epidemiologia , Levamisol/efeitos adversos , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA