Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Inorg Chem ; 21(1): 53-62, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26748795

RESUMO

A novel metalloprotein containing a unique [S2MoS2CuS2MoS2](3-) cluster, designated as Orange Protein (ORP), was isolated for the first time from Desulfovibrio gigas, a sulphate reducer. The orp operon is conserved in almost all sequenced Desulfovibrio genomes and in other anaerobic bacteria, however, so far D. gigas ORP had been the only ORP characterized in the literature. In this work, the purification of another ORP isolated form Desulfovibrio alaskensis G20 is reported. The native protein is monomeric (12443.8 ± 0.1 Da by ESI-MS) and contains also a MoCu cluster with characteristic absorption bands at 337 and 480 nm, assigned to S-Mo charge transfer bands. Desulfovibrio alaskensis G20 recombinant protein was obtained in the apo-form from E. coli. Cluster reconstitution studies and UV-visible titrations with tetrathiomolybdate of the apo-ORP incubated with Cu ions indicate that the cluster is incorporated in a protein metal-assisted synthetic mode and the protein favors the 2Mo:1Cu stoichiometry. In Desulfovibrio alaskensis G20, the orp genes are encoded by a polycistronic unit composed of six genes whereas in Desulfovibrio vulgaris Hildenborough the same genes are organized into two divergent operons, although the composition in genes is similar. The gene expression of ORP (Dde_3198) increased 6.6 ± 0.5 times when molybdate was added to the growth medium but was not affected by Cu(II) addition, suggesting an involvement in molybdenum metabolism directly or indirectly in these anaerobic bacteria.


Assuntos
Proteínas de Bactérias/metabolismo , Cobre/química , Desulfovibrio/metabolismo , Molibdênio/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Espectrometria de Massas por Ionização por Electrospray , Espectrofotometria Ultravioleta
3.
J Phys Chem B ; 114(47): 15605-9, 2010 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-21062074

RESUMO

This work presents a systematic investigation into liquid-liquid phase equilibria for systems containing three various ionic liquids and four dienes as they have not been reported yet. The systems employed in this study containing dicyanamide based ionic liquids and dienes reveal the phase envelopes that have a similar shape to binodal curves with the upper critical solution temperature. Generally, 1-methyl-3-octylimidazolium dicyanamide ([C(8)mim][DCA]) was found to be a better solvent for nonpolar dienes. The 1-butyl-3-methylimidazolium dicyanamide ([C(4)mim][DCA]) ionic liquid is a much worse solvent for 1,5-cyclooctadiene, 1,3-cyclooctadiene, 1,5-hexadiene, and 1,7-octadiene compared to other ionic liquids studied. The miscibility gaps shrink for a less polar [C(8)mim][DCA] or even more for 1-dodecyl-3-methylimidazolium dicyanamide ([C(12)mim][DCA]). In the range of the studied temperatures, the solubility of dienes is significantly higher compared to the solubility of the ionic liquids containing the shorter alkyl chain in the cation. The solubility of the presented dienes in ([C(4)mim][DCA]) ionic liquid is also relatively high and may reach up to 0.19 mol fraction of the diene. The attained results demonstrate that nonpolar compounds can be dissolved to some extent in highly charged and polar solvents such as ionic liquids.


Assuntos
Alcadienos/química , Cianamida/química , Ciclo-Octanos/química , Líquidos Iônicos/química , Imidazóis/química , Solubilidade , Solventes/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA