Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Phys Chem Chem Phys ; 26(17): 13239-13250, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38634828

RESUMO

We synthesized a series of four parent aza-ß-ketoiminate organoboron complexes and performed spectroscopic studies using both experimental and computational techniques. We studied how benzannulation influences the vibronic structure of the UV/Vis absorption bands with a focus on the bright lowest-energy π → π* electronic excitation. Theoretical simulations, accounting for inhomogeneous broadening effects using different embedding schemes, allowed gaining in-depth insights into the observed differences in band shapes induced by structural modifications. We observed huge variations in the distributions of vibronic transitions depending on the position of benzannulation. By and large, the harmonic approximation combined with the adiabatic hessian model delivers qualitatively correct band shapes for the one-photon absorption spectra, except in one case. We also assessed the importance of non-Condon effects (accounted for by the linear term in Herzberg-Teller expansion of the dipole moment) for S0 → S1 band shapes. It turned out that non-Condon contributions have no effect on the band shape in one-photon absorption spectra. In contrast, these effects significantly change the Franck-Condon band shapes of the two-photon absorption spectra. For one of the studied organoboron complexes we also performed a preliminary exploration of mechanical anharmonicity, resulting in an increase of the intensity of the 0-0 transition, which improves the agreement with the experimental data compared to the harmonic model.

2.
Phys Chem Chem Phys ; 25(16): 11658-11664, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37043249

RESUMO

The popularity of infrared (IR) spectroscopy is due to its high interpretive power. This study presents a new computational tool for analyzing the IR spectra of molecular complexes in terms of intermolecular interaction energy components. In particular, the proposed scheme enables associating the changes in the IR spectra occurring upon complex formation with individual types of intermolecular interactions (electrostatic, exchange, induction, and dispersion), thus providing a completely new insight into the relations between the spectral features and the nature of interactions in molecular complexes. To demonstrate its interpretive power, we analyze, for selected vibrational modes, which interaction types rule the IR intensity changes upon the formation of two different types of complexes, namely π⋯π stacked (benzene⋯1,3,5-trifluorobenzene) and hydrogen-bonded (HCN⋯HNC) systems. The exemplary applications of the new scheme to these two molecular complexes revealed that the interplay of interaction energy components governing their stability might be very different from that behind the IR intensity changes. For example, in the case of the dispersion-bound π⋯π-type complex, dispersion contributions to the interaction induced IR intensity of the selected modes are notably smaller than their first-order (electrostatic and exchange) counterparts.

3.
Phys Chem Chem Phys ; 25(44): 30193-30197, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37905423

RESUMO

In this Communication, we study the effect of spurious oscillations in the profiles of energy derivatives with respect to nuclear coordinates calculated with density functional approximations (DFAs) for formaldehyde, pyridine, and furan in their ground and electronic excited states. These spurious oscillations, which can only be removed using extensive integration grids that increase enormously the CPU cost of DFA calculations, are significant in the case of third- and fourth-order energy derivatives of the ground and excited states computed by M06-2X and ωB97X functionals. The errors in question propagate to anharmonic vibronic spectra computed under the Franck-Condon approximation, i.e., positions and intensities of vibronic transitions are affected to a large extent (shifts as significant as hundreds of cm-1 were observed). On the other hand, the LC-BLYP and CAM-B3LYP functionals show a much less pronounced effect due to spurious oscillations. Based on the results presented herein, we recommend either LC-BLYP or CAM-B3LYP with integration grids (250, 974) (or larger) for numerically stable simulations of vibronic spectra including anharmonic effects.

4.
Phys Chem Chem Phys ; 25(30): 20173-20177, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37466634

RESUMO

A recently developed computational scheme is employed to interpret changes in the infrared spectra of halogen-bonded systems in terms of intermolecular interaction energy components (electrostatic, exchange, induction, dispersion) taking pyridine⋯perfluorohaloarene complexes as examples. For all complexes, we find a strong linear correlation between the different terms of the interaction-induced changes of the IR band associated with an intermolecular halogen bond stretching mode and the corresponding terms of the interaction energy, which implies that the interaction components play similar roles in both properties. This is not true for other vibrational modes localized in one of the monomers studied here, for which the corresponding interaction-induced changes in IR bands may present a completely different decomposition than the interaction energy.

5.
J Phys Chem A ; 127(38): 7928-7936, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37721870

RESUMO

In this work, we have employed electronic structure theories to explore the effect of the planarity of the chromophore on the two-photon absorption properties of bi- and ter-phenyl systems. To that end, we have considered 11 bi- and 7 ter-phenyl-based chromophores presenting a donor-π-acceptor architecture. In some cases, the planarity has been enforced by bridging the rings at ortho-positions by -CH2 and/or -BH, -O, -S, and -NH moieties. The results presented herein demonstrate that in bi- and ter-phenyl systems, the planarity achieved via a -CH2 bridge increases the 2PA activity. However, the introduction of a bridge with the -BH moiety perturbs the electronic structure to a large extent, thus diminishing the two-photon transition strength to the lowest electronic excited state. As far as two-photon absorption activity is concerned, this work hints toward avoiding -BH bridge(s) to enforce planarity in bi- and ter-phenyl systems; however, one may use -CH2 bridge(s) to achieve the enhancement of the property in question. All of these conclusions have been supported by in-depth analyses based on generalized few-state models.

6.
Molecules ; 28(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37570617

RESUMO

The first-, second-, and third-order molecular nonlinear optical properties, including two-photon absorption of a series of derivatives, involving two dithienylethene (DTE) groups connected by several molecular linkers (bis(ethylene-1,2-dithiolato)Ni- (NiBDT), naphthalene, quasilinear oligothiophene chains), are investigated by employing density functional theory (DFT). These properties can be efficiently controlled by DTE switches, in connection with light of appropriate frequency. NiBDT, as a linker, is associated with a greater contrast, in comparison to naphthalene, between the first and second hyperpolarizabilities of the "open-open" and the "closed-closed" isomers. This is explained by invoking the low-lying excited states of NiBDT. It is shown that the second hyperpolarizability can be used as an index, which follows the structural changes induced by photochromism. Assuming a Förster type transfer mechanism, the intramolecular excited-state energy transfer (EET) mechanism is studied. Two important parameters related to this are computed: the electronic coupling (VDA) between the donor and acceptor fragments as well as the overlap between the absorption and emission spectra of the donor and acceptor groups. NiBDT as a linker is associated with a low electronic coupling, VDA, value. We found that VDA is affected by molecular geometry. Our results predict that the linker strongly influences the communication between the open-closed DTE groups. The sensitivity of the molecular nonlinear optical properties could assist with identification of molecular isomers.

7.
J Org Chem ; 87(22): 15159-15165, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36317734

RESUMO

We have studied the halogen-bonding interactions of a pyridine-functionalized fluoroborate dye with perfluorohaloarenes (C6F6, C6F5Cl, C6F5Br, and C6F5I) in the two-component-only liquid phase using fluorescence spectroscopy. Based on the results of spectroscopic measurements and electronic-structure calculations, we have confirmed the stability only for the complex between C6F5I and the emissive dye, and it has been demonstrated that halogen-bonding interactions are accompanied by significant Stokes shifts for the ππ* band. We also provide experimental evidence that for this complex, the emission is quenched due to a simultaneous decrease of radiative and increase of nonradiative decay rate constants upon halogen-bonding interactions.

8.
Phys Chem Chem Phys ; 24(22): 13534-13541, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35612526

RESUMO

Following recent experimental work demonstrating strong nonlinear optical properties, namely second harmonic generation of light, in crystals composed of 16,20-dinitro-(3,4,8,9)-dibenzo-2,7-dioxa-5,10-diaza[4.4.4]propellane molecules [A. Miniewicz, S. Bartkiewicz, E. Wojaczynska, T. Galica, R. Zalesny and R. Jakubas, J. Mater. Chem. C, 2019, 7, 1255-1262] in this paper we aim to investigate "structure-property" relationships for a series of 16 propellanes presenting a wide palette of substituents with varying electron-accepting/donating capabilities. To that end, we use electronic- and vibrational-structure theories and a recently developed generalized few-state model combined with a range-separated CAM-B3LYP functional to analyze electronic and vibrational contributions to the first hyperpolarizability for the whole series of molecules. The variations in computed properties are large among the studied set of substituents and can reach an order of magnitude. It has been demonstrated that the maximum values of frequency-independent first hyperpolarizability are expected for strong electron-accepting NO2 substituents, but only at the preferred position with respect to the electronegative oxygen atom in the 1,4-oxazine moiety. This holds for electronic as well as vibrational counterparts.

9.
J Phys Chem A ; 126(5): 752-759, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35084177

RESUMO

The molecular origin of two- (2PA) and three-photon absorption (3PA) activity in three experimentally studied chromophores, prototypical dipolar systems, is investigated. To that end, a generalized few-state model (GFSM) formula is derived for the 3PA transition strength for nonhermitian theories and employed at the coupled-cluster level of theory. Using various computational techniques such as molecular dynamics, linear and quadratic response theories, and GFSM, an in-depth analysis of various optical channels involved in 2PA and 3PA processes is presented. It is found that the four-state model involving the second and third excited singlet states as intermediates is the smallest model among all considered few-state approximations that produces 2PA and 3PA transition strengths (for S0 → S1 transition) close to the reference results. By analyzing various optical channels appearing in these models and involved in studied multiphoton processes, we found that the 2PA and 3PA activities in all the three chromophores are dominated and hence controlled by the dipole moment of the final excited state. The similar origins of the 2PA and the 3PA in these prototypical dipolar chromophores suggest transferability of structure-property relations from the 2PA to the 3PA domain.


Assuntos
Fótons
10.
Molecules ; 27(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36557870

RESUMO

Contemporary design of new organic non-linear optical (NLO) materials relies to a large extent on the understanding of molecular and electronic structure-property relationships revealed during the years by available computational approaches. The progress in theory-hand-in-hand with experiment-has enabled us to identify and analyze various physical aspects affecting the NLO responses, such as the environmental effects, molecular vibrations, frequency dispersion, and system dynamics. Although it is nowadays possible to reliably address these effects separately, the studies analyzing their mutual interplay are still very limited. Here, we employ density functional theory (DFT) methods in combination with an implicit solvent model to examine the solvent effects on the electronic and harmonic as well as anharmonic vibrational contributions to the static first hyperpolarizability of a series of push-pull α,ω-diphenylpolyene oligomers, which were experimentally shown to exhibit notable second-order NLO responses. We demonstrate that the magnitudes of both vibrational and electronic contributions being comparable in the gas phase significantly increase in solvents, and the enhancement can be, in some cases, as large as three- or even four-fold. The electrical and mechanical anharmonic contributions are not negligible but cancel each other out to a large extent. The computed dynamic solute NLO properties of the studied systems are shown to be in a fair agreement with those derived from experimentally measured electric-field-induced second-harmonic generation (EFISHG) signals. Our results substantiate the necessity to consider concomitantly both solvation and vibrational effects in modeling static NLO properties of solvated systems.


Assuntos
Eletricidade , Vibração , Solventes
11.
J Phys Chem A ; 125(12): 2581-2587, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33755484

RESUMO

We present a theoretical study of a two-photon absorption (2PA) process in dipolar and quadrupolar systems containing two BF2 units. For this purpose, we considered 13 systems studied by Ponce-Vargas et al. [ J. Phys. Chem. B 2017, 121, 10850-10858] and performed linear and quadratic response theory calculations based on the RI-CC2 method to obtain the 2PA parameters. Furthermore, using the recently developed generalized few-state model, we provided an in-depth view of the changes in 2PA properties in the molecules considered. Our results clearly indicate that suitable electron-donating group substitution to the core BF2 units results in a large red-shift of the two-photon absorption wavelength, thereby entering into the desired biological window. Furthermore, the corresponding 2PA strength also increases significantly (up to 30-fold). This makes the substituted systems a potential candidate for biological imaging.

12.
J Chem Inf Model ; 60(8): 3854-3863, 2020 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-32786232

RESUMO

Monoamine oxidase B (MAO-B) is a potential biomarker for Parkinson's disease (PD), a neurodegenerative disease associated with the loss of motor activities in human subjects. The disease state is associated with dopamine deprival, and so the inhibitors of MAO-B can serve as therapeutic drugs for PD. Since the expression level of MAO-B directly correlates to the disease progress, the distribution and population of this enzyme can be employed to monitor disease development. One of the approaches available for estimating the population is two-photon imaging. The ligands used for two-photon imaging should have high binding affinity and binding specificity toward MAO-B along with significant two-photon absorption cross sections when they are bound to the target. In this article, we study using a multiscale modeling approach, the binding affinity and spectroscopic properties (one- and two-photon absorption) of three (Flu1, Flu2, Flu3) of the currently available probes for monitoring the MAO-B level. We report that the binding affinity of the probes can be explained using the molecular size and binding cavity volume. The experimentally determined one-photon absorption spectrum is well reproduced by the employed QM/MM approaches, and the most accurate spectral shifts, on passing from one probe to another, are obtained at the coupled-cluster (CC2) level of theory. An important conclusion from this study is also the demonstration that intrinsic molecular two-photon absorption strengths (δ2PA) increase in the order δ2PA (Flu1) > δ2PA (Flu2) > δ2PA (Flu3). This is in contrast with experimental data, which predict similar values of two-photon absorption cross sections for Flu1 and Flu3. We demontrate, based on the results of electronic-structure calculations for Flu1 that this discrepancy cannot be explained by an explicit account for neighboring residues (which could lead to charge transfer between a probe and neighboring aromatic amino acids thus boosting δ2PA). In summary, we show that the employed multiscale approach not only can optimize two-photon absorption properties and verify binding affinity, but it can also help in detailed analyses of experimental data.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Biomarcadores , Humanos , Monoaminoxidase , Inibidores da Monoaminoxidase , Doença de Parkinson/diagnóstico
13.
Phys Chem Chem Phys ; 22(7): 4225-4234, 2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32043097

RESUMO

Following our study on hydrogen-bonded (HB) complexes [Phys. Chem. Chem. Phys., 2018, 20, 19841], the physical nature of interaction-induced (non)linear optical properties of another important class of molecular complexes, namely halogen-bonded (XB) systems, was analyzed in this study. The excess electronic and nuclear relaxation (hyper)polarizabilities of nine representative XB complexes covering a wide range of halogen-bond strengths were computed. The partitioning of the excess properties into individual interaction-energy components (electrostatic, exchange, induction, dispersion) was performed by using the variational-perturbational energy decomposition scheme at the MP2/aug-cc-pVTZ level of theory and further supported by calculations with the SCS-MP2 method. In the case of the electronic interaction-induced properties, the physical composition of Δαel and Δγel was found to be very similar for the two types of bonding, despite the different nature of the binding. For Δßel, the XB complexes exhibit a more systematic interplay of interaction-energy contributions compared to the HB systems studied in the previous work. Our analysis revealed that the patterns of interaction-energy contributions to the interaction-induced nuclear-relaxation contributions to the linear polarizability and the first hyperpolarizability are very similar. For both properties the exchange repulsion term is canceled out by the electrostatic and delocalization terms. The physical composition of these contributions is analogous to those observed for the HB complexes.

14.
Phys Chem Chem Phys ; 20(31): 20334-20339, 2018 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-30043007

RESUMO

Optical imaging of amyloid fibrils serves as a cost-effective route for the diagnosis of Alzheimer-like conformational diseases. However, the challenge here is to optimize the binding affinity and photophysical properties of the optical imaging agents in a way specific to certain types of amyloids. In a few occasions it is shown that novel optical imaging agents can be designed to bind to a particular type of amyloid fibril with larger binding affinity and specificity. There is also a recent report on photoluminescent polythiophenes which display photophysical properties that can be used to distinguish the variants or subtypes of amyloids (J. Rasmussen et al., Proc. Natl. Acad. Sci. U. S. A., 2017, 114(49), 13018-13023). Based on a multiscale modeling approach, here, we report on the complementary aspect that the photophysical properties of a benzothiazole based optical probe (referred to as BTA-3) can be specific to the binding sites in the same amyloid fibrils and we attribute this to its varying electronic structure in different sites. As reported experimentally from competitive binding assay studies for many amyloid staining molecules and tracers, we also show multiple binding sites in amyloid fibrils for this probe. In particular, BTA-3 displayed a red-shift in its low-frequency absorption band only in site-4, a surface site of amyloid fibrils when compared to the spectra in water solvent. In the remaining sites, it exhibited a less significant blue shift for the same absorption band.


Assuntos
Amiloide/metabolismo , Benzotiazóis/metabolismo , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/metabolismo , Amiloide/química , Benzotiazóis/química , Sítios de Ligação , Corantes Fluorescentes/química , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica , Teoria Quântica , Termodinâmica
15.
Phys Chem Chem Phys ; 20(30): 19841-19849, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30033466

RESUMO

Understanding the effects of different fundamental intermolecular interactions on nonlinear optical properties is crucial for proposing efficient strategies to obtain new materials with tailored properties. In this study, we computed the electronic and vibrational (hyper)polarizabilities of ten hydrogen-bonded molecular complexes employing the MP2, CCSD and CCSD(T) methods combined with the aug-cc-pVTZ basis set. The vibrational contributions to hyperpolarizabilities included nuclear-relaxation anharmonic corrections. The effect of intermolecular interactions was analyzed in terms of excess properties, which are defined as the difference between a property of the complex and the net properties of the noninteracting subsystems. Considering systems covering a wide range of hydrogen bond strengths, the electronic and vibrational excess (hyper)polarizabilities were decomposed into different interaction energy contributions (electrostatic, exchange, induction and dispersion). This systematic study, the very first of this kind, revealed that the physical origins of the electronic and vibrational excess properties are completely different. In the case of vibrational contributions, the decomposition pattern is very similar for the polarizability and first and second hyperpolarizabilities. The exchange contributions to excess vibrational properties are the largest and they have an opposite sign to the electrostatic, induction and dispersion terms. On the other hand, no general patterns can be established for the electronic excess properties.

16.
J Org Chem ; 82(3): 1529-1537, 2017 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-28067510

RESUMO

In this study we present a new series of phenantridine-based substituted difluoroboranyls. The effects of substitution and double benzannulation on their photophysical properties were examined with experimental techniques and compared with the results obtained for previously reported quinoline and isoquinoline derivatives. The experimental characterizations are supported by state-of-the-art quantum-chemical calculations. In particular, the theoretical calculations were performed to gain insights into the complex nature of the relevant excited-states. These calculations reveal that both the nature of the substituent and its position on the phenyl ring significantly impact the magnitude of the electronic charge transferred upon excitation. Additionally, vibrationally resolved spectra were determined allowing for the analysis of the key vibrations playing a role in the band shapes.

17.
Phys Chem Chem Phys ; 19(35): 24276-24283, 2017 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-28848981

RESUMO

This study focuses on the theoretical description of the influence of spatial confinement on the electronic and vibrational contributions to (hyper)polarizabilities of two dimeric hydrogen bonded systems, namely HCNHCN and HCNHNC. A two-dimensional analytical potential is employed to render the confining environment (e.g. carbon nanotube). Based on the results of the state-of-the-art calculations, performed at the CCSD(T)/aug-cc-pVTZ level of theory, we established that: (i) the influence of spatial confinement increases with increasing order of the electrical properties, (ii) the effect of spatial confinement is much larger in the case of the electronic than vibrational contribution (this holds for each order of the electrical properties) and (iii) the decrease in the static nuclear relaxation first hyperpolarizability upon the increase of confinement strength is mainly due to changes in the harmonic term, however, in the case of nuclear relaxation second hyperpolarizability the anharmonic terms contribute more to the drop of this property.

18.
Phys Chem Chem Phys ; 19(11): 7568-7575, 2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-28252124

RESUMO

In the present contribution we study the influence of spatial restriction on the two-photon dipole transitions between the X1Σ+ and A1Σ+ states of lithium hydride. The bond-length dependence of the two-photon absorption strength is also analyzed for the first time in the literature. The highly accurate multiconfiguration self-consistent field (MCSCF) method and response theory are used to characterize the electronic structure of the studied molecule. In order to render the effect of orbital compression we apply a two-dimensional harmonic oscillator potential, mimicking the topology of cylindrical confining environments (e.g. carbon nanotubes, quantum wires). Among others, the obtained results provide evidence that at large internuclear distances the TPA response of lithium hydride may be significantly enhanced and this effect is much more pronounced upon embedding of the LiH molecule in an external confining potential. To understand the origin of the observed variation in the two-photon absorption response a two-level approximation is employed.

19.
Phys Chem Chem Phys ; 19(8): 5705-5708, 2017 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-28177027

RESUMO

This communication presents a structure-property study of a few novel pyridine-based difluoroborate compounds with a N-BF2-O core, which exhibit outstanding fluorescence properties. To exploit their potential for two-photon bioimaging, relationships between the two-photon action cross section and systematic structural modifications have been investigated and unravelled.

20.
Molecules ; 22(10)2017 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-28973973

RESUMO

We have examined several approaches relying on the Polarizable Embedding (PE) scheme to predict optical band shapes for two chalcone molecules in methanol solution. The PE-TDDFT and PERI-CC2 methods were combined with molecular dynamics simulations, where the solute geometry was kept either as rigid, flexible or partly-flexible (restrained) body. The first approach, termed RBMD-PE-TDDFT, was employed to estimate the inhomogeneous broadening for subsequent convolution with the vibrationally-resolved spectra of the molecule in solution determined quantum-mechanically (QM). As demonstrated, the RBMD-PE-TDDFT/QM-PCM approach delivers accurate band widths, also reproducing their correct asymmetric shapes. Further refinement can be obtained by the estimation of the inhomogeneous broadening using the RBMD-PERI-CC2 method. On the other hand, the remaining two approaches (FBMD-PE-TDDFT and ResBMD-PE-TDDFT), which lack quantum-mechanical treatment of molecular vibrations, lead to underestimated band widths. In this study, we also proposed a simple strategy regarding the rapid selection of the exchange-correlation functional for the simulations of vibrationally-resolved one- and two-photon absorption spectra based on two easy-to-compute metrics.


Assuntos
Chalconas/química , Simulação de Dinâmica Molecular , Estrutura Molecular , Fótons , Relação Quantitativa Estrutura-Atividade , Teoria Quântica , Soluções/química , Vibração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA