Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 585(7825): E13, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32848254

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

2.
Nature ; 583(7818): 813-818, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32699410

RESUMO

Most sensory information destined for the neocortex is relayed through the thalamus, where considerable transformation occurs1,2. One means of transformation involves interactions between excitatory thalamocortical neurons that carry data to the cortex and inhibitory neurons of the thalamic reticular nucleus (TRN) that regulate the flow of those data3-6. Although the importance of the TRN has long been recognised7-9, understanding of its cell types, their organization and their functional properties has lagged behind that of the thalamocortical systems they control. Here we address this by investigating the somatosensory and visual circuits of the TRN in mice. In the somatosensory TRN we observed two groups of genetically defined neurons that are topographically segregated and physiologically distinct, and that connect reciprocally with independent thalamocortical nuclei through dynamically divergent synapses. Calbindin-expressing cells-located in the central core-connect with the ventral posterior nucleus, the primary somatosensory thalamocortical relay. By contrast, somatostatin-expressing cells-which reside along the surrounding edges of the TRN-synapse with the posterior medial thalamic nucleus, a higher-order structure that carries both top-down and bottom-up information10-12. The two TRN cell groups process their inputs in pathway-specific ways. Synapses from the ventral posterior nucleus to central TRN cells transmit rapid excitatory currents that depress deeply during repetitive activity, driving phasic spike output. Synapses from the posterior medial thalamic nucleus to edge TRN cells evoke slower, less depressing excitatory currents that drive more persistent spiking. Differences in the intrinsic physiology of TRN cell types, including state-dependent bursting, contribute to these output dynamics. The processing specializations of these two somatosensory TRN subcircuits therefore appear to be tuned to the signals they carry-a primary central subcircuit tuned to discrete sensory events, and a higher-order edge subcircuit tuned to temporally distributed signals integrated from multiple sources. The structure and function of visual TRN subcircuits closely resemble those of the somatosensory TRN. These results provide insights into how subnetworks of TRN neurons may differentially process distinct classes of thalamic information.


Assuntos
Vias Neurais , Núcleos Talâmicos/citologia , Núcleos Talâmicos/fisiologia , Potenciais de Ação , Animais , Calbindinas/metabolismo , Potenciais Somatossensoriais Evocados , Potenciais Evocados Visuais , Feminino , Cinética , Masculino , Camundongos , Inibição Neural , Neurônios/metabolismo , Somatostatina/metabolismo , Sinapses/metabolismo
3.
J Neurophysiol ; 113(7): 2987-97, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25717157

RESUMO

Classic studies of lateral geniculate nucleus (LGN) and visual cortex (V1) in carnivores and primates have found that a majority of neurons in LGN exhibit a center-surround organization, while V1 neurons exhibit strong orientation selectivity and, in many species, direction selectivity. Recent work in the mouse and the monkey has discovered previously unknown classes of orientation- and direction-selective neurons in LGN. Furthermore, some recent studies in the mouse report that many LGN cells exhibit pronounced orientation biases that are of comparable strength to the subthreshold inputs to V1 neurons. These results raise the possibility that, in rodents, orientation biases of individual LGN cells make a substantial contribution to cortical orientation selectivity. Alternatively, the size and contribution of orientation- or direction-selective channels from LGN to V1 may vary across mammals. To address this question, we examined orientation and direction selectivity in LGN and V1 neurons of a highly visual diurnal rodent: the gray squirrel. In the representation of central vision, only a few LGN neurons exhibited strong orientation or direction selectivity. Across the population, LGN neurons showed weak orientation biases and were much less selective for orientation compared with V1 neurons. Although direction selectivity was weak overall, LGN layers 3abc, which contain neurons that express calbindin, exhibited elevated direction selectivity index values compared with LGN layers 1 and 2. These results suggest that, for central visual fields, the contribution of orientation- and direction-selective channels from the LGN to V1 is small in the squirrel. As in other mammals, this small contribution is elevated in the calbindin-positive layers of the LGN.


Assuntos
Corpos Geniculados/fisiologia , Neurônios/fisiologia , Orientação/fisiologia , Sciuridae/fisiologia , Percepção Espacial/fisiologia , Percepção Visual/fisiologia , Animais , Feminino , Masculino , Rede Nervosa/fisiologia
4.
Cell Rep ; 25(6): 1593-1609.e7, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30404012

RESUMO

The induction of limb repair in adult vertebrates is a pressing, unsolved problem. Here, we characterize the effects of an integrated device that delivers drugs to severed hindlimbs of adult Xenopus laevis, which normally regenerate cartilaginous spikes after amputation. A wearable bioreactor containing a silk protein-based hydrogel that delivered progesterone to the wound site immediately after hindlimb amputation for only 24 hr induced the regeneration of paddle-like structures in adult frogs. Molecular markers, morphometric analysis, X-ray imaging, immunofluorescence, and behavioral assays were used to characterize the differences between the paddle-like structures of successful regenerates and hypomorphic spikes that grew in untreated animals. Our experiments establish a model for testing therapeutic cocktails in vertebrate hindlimb regeneration, identify pro-regenerative activities of progesterone-containing bioreactors, and provide proof of principle of brief use of integrated device-based delivery of small-molecule drugs as a viable strategy to induce and maintain a long-term regenerative response.


Assuntos
Reatores Biológicos , Membro Posterior/efeitos dos fármacos , Progesterona/administração & dosagem , Progesterona/farmacologia , Dispositivos Eletrônicos Vestíveis , Xenopus laevis/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Remodelação Óssea/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Receptores de Progesterona/metabolismo , Regeneração/efeitos dos fármacos , Natação , Transcriptoma/genética , Cicatrização/efeitos dos fármacos , Xenopus laevis/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA