Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34373319

RESUMO

Atomic structures of several proteins from the coronavirus family are still partial or unavailable. A possible reason for this gap is the instability of these proteins outside of the cellular context, thereby prompting the use of in-cell approaches. In situ cross-linking and mass spectrometry (in situ CLMS) can provide information on the structures of such proteins as they occur in the intact cell. Here, we applied targeted in situ CLMS to structurally probe Nsp1, Nsp2, and nucleocapsid (N) proteins from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and obtained cross-link sets with an average density of one cross-link per 20 residues. We then employed integrative modeling that computationally combined the cross-linking data with domain structures to determine full-length atomic models. For the Nsp2, the cross-links report on a complex topology with long-range interactions. Integrative modeling with structural prediction of individual domains by the AlphaFold2 system allowed us to generate a single consistent all-atom model of the full-length Nsp2. The model reveals three putative metal binding sites and suggests a role for Nsp2 in zinc regulation within the replication-transcription complex. For the N protein, we identified multiple intra- and interdomain cross-links. Our integrative model of the N dimer demonstrates that it can accommodate three single RNA strands simultaneously, both stereochemically and electrostatically. For the Nsp1, cross-links with the 40S ribosome were highly consistent with recent cryogenic electron microscopy structures. These results highlight the importance of cellular context for the structural probing of recalcitrant proteins and demonstrate the effectiveness of targeted in situ CLMS and integrative modeling.


Assuntos
Modelos Moleculares , SARS-CoV-2/química , Proteínas Virais/química , Reagentes de Ligações Cruzadas/química , Células HEK293 , Humanos , Espectrometria de Massas , Domínios Proteicos
2.
J Proteome Res ; 20(7): 3701-3708, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34151562

RESUMO

Cross-linking of living cells followed by mass spectrometry identification of cross-linked peptides (in situ CLMS) is an emerging technology to study protein structures in their native environment. One of the inherent difficulties of this technology is the high complexity of the samples following cell lysis. Currently, this difficulty largely limits the identification of cross-links to the more abundant proteins in the cell. Here, we describe a targeted approach in which an antibody is used to purify a specific protein-of-interest out of the cell lysate. Mass spectrometry analysis of the protein material that binds to the antibody can then identify considerably more cross-links on the target protein. By using an antibody against the CCT chaperonin, we identified over 200 cross-links that provide in situ evidence for the subunit arrangement of the CCT particle and its interactions with prefoldin. Similar targeting with an antibody against tubulin provided in situ evidence for the structure of the microtubule. Finally, the approach was also successful in identifying cross-links within a protein that expresses at a low level. These results demonstrate the general utility of antibody-based sample simplification for in situ CLMS and greatly expand the scope of protein systems that are amenable to in situ structural studies.


Assuntos
Peptídeos , Proteínas , Anticorpos , Reagentes de Ligações Cruzadas , Humanos , Espectrometria de Massas
3.
Proc Natl Acad Sci U S A ; 114(50): 13230-13235, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29180430

RESUMO

The DNA damage response is an essential process for the survival of living cells. In a subset of stress-responsive genes in humans, Elongin controls transcription in response to multiple stimuli, such as DNA damage, oxidative stress, and heat shock. Yeast Elongin (Ela1-Elc1), along with Def1, is known to facilitate ubiquitylation and degradation of RNA polymerase II (pol II) in response to multiple stimuli, yet transcription activity has not been examined. We have found that Def1 copurifies from yeast whole-cell extract with TFIIH, the largest general transcription factor required for transcription initiation and nucleotide excision repair. The addition of recombinant Def1 and Ela1-Elc1 enhanced transcription initiation in an in vitro reconstituted system including pol II, the general transcription factors, and TFIIS. Def1 also enhanced transcription restart from TFIIS-induced cleavage in a pol II transcribing complex. In the Δdef1 strain, heat shock genes were misregulated, indicating that Def1 is required for induction of some stress-responsive genes in yeast. Taken together, our results extend the understanding of the molecular mechanism of transcription regulation on cellular stress and reveal functional similarities to the mammalian system.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , RNA Polimerase II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fator de Transcrição TFIIH/metabolismo , Proteínas Cromossômicas não Histona/genética , Elonguina/genética , Elonguina/metabolismo , Ligação Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Estresse Fisiológico , Iniciação da Transcrição Genética
4.
iScience ; 27(6): 110140, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38957792

RESUMO

The initiation of transcription in Escherichia coli (E. coli) is facilitated by promoter specificity factors, also known as σ factors, which may bind a promoter only as part of a complex with RNA polymerase (RNAP). By performing in vitro cross-linking mass spectrometry (CL-MS) of apo-σ70, we reveal structural features suggesting a compact conformation compared to the known RNAP-bound extended conformation. Then, we validate the existence of the compact conformation using in vivo CL-MS by identifying cross-links similar to those found in vitro, which deviate from the extended conformation only during the stationary phase of bacterial growth. Conclusively, we provide information in support of a compact conformation of apo-σ70 that exists in live cells, which might represent a transcriptionally inactive form that can be activated upon binding to RNAP.

5.
Structure ; 31(4): 411-423.e6, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36809765

RESUMO

Parkinson disease is associated with the aggregation of the protein α-synuclein. While α-synuclein can exist in multiple oligomeric states, the dimer has been a subject of extensive debates. Here, using an array of biophysical approaches, we demonstrate that α-synuclein in vitro exhibits primarily a monomer-dimer equilibrium in nanomolar concentrations and up to a few micromolars. We then use spatial information from hetero-isotopic cross-linking mass spectrometry experiments as restrains in discrete molecular dynamics simulations to obtain the ensemble structure of dimeric species. Out of eight structural sub-populations of dimers, we identify one that is compact, stable, abundant, and exhibits partially exposed ß-sheet structures. This compact dimer is the only one where the hydroxyls of tyrosine 39 are in proximity that may promote dityrosine covalent linkage upon hydroxyl radicalization, which is implicated in α-synuclein amyloid fibrils. We propose that this α-synuclein dimer features etiological relevance to Parkinson disease.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/química , Doença de Parkinson/etiologia , Doença de Parkinson/metabolismo , Conformação Molecular , Amiloide/química
6.
Structure ; 29(9): 1048-1064.e6, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34015255

RESUMO

α-Synuclein plays an important role in synaptic functions by interacting with synaptic vesicle membrane, while its oligomers and fibrils are associated with several neurodegenerative diseases. The specific monomer structures that promote its membrane binding and self-association remain elusive due to its transient nature as an intrinsically disordered protein. Here, we use inter-dye distance distributions from bulk time-resolved Förster resonance energy transfer as restraints in discrete molecular dynamics simulations to map the conformational space of the α-synuclein monomer. We further confirm the generated conformational ensemble in orthogonal experiments utilizing far-UV circular dichroism and cross-linking mass spectrometry. Single-molecule protein-induced fluorescence enhancement measurements show that within this conformational ensemble, some of the conformations of α-synuclein are surprisingly stable, exhibiting conformational transitions slower than milliseconds. Our comprehensive analysis of the conformational ensemble reveals essential structural properties and potential conformations that promote its various functions in membrane interaction or oligomer and fibril formation.


Assuntos
Simulação de Dinâmica Molecular , alfa-Sinucleína/química , Transferência Ressonante de Energia de Fluorescência , Humanos
7.
Nat Commun ; 11(1): 3128, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32561732

RESUMO

Whole-cell cross-linking coupled to mass spectrometry is one of the few tools that can probe protein-protein interactions in intact cells. A very attractive reagent for this purpose is formaldehyde, a small molecule which is known to rapidly penetrate into all cellular compartments and to preserve the protein structure. In light of these benefits, it is surprising that identification of formaldehyde cross-links by mass spectrometry has so far been unsuccessful. Here we report mass spectrometry data that reveal formaldehyde cross-links to be the dimerization product of two formaldehyde-induced amino acid modifications. By integrating the revised mechanism into a customized search algorithm, we identify hundreds of cross-links from in situ formaldehyde fixation of human cells. Interestingly, many of the cross-links could not be mapped onto known atomic structures, and thus provide new structural insights. These findings enhance the use of formaldehyde cross-linking and mass spectrometry for structural studies.


Assuntos
Reagentes de Ligações Cruzadas/química , Formaldeído/química , Mapeamento de Interação de Proteínas/métodos , Proteínas/química , Aminoácidos/química , Linhagem Celular Tumoral , Humanos , Espectrometria de Massas , Simulação de Acoplamento Molecular , Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA