Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Water Sci Technol ; 89(6): 1512-1525, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38557715

RESUMO

This study aims to investigate the differences in intra-urban catchments with different characteristics through real-time wastewater monitoring. Monitoring stations were installed in three neighbourhoods of Barcelona to measure flow, total chemical oxygen demand (COD), pH, conductivity, temperature, and bisulfide (HS-) for 1 year. Typical wastewater profiles were obtained for weekdays, weekends, and holidays in the summer and winter seasons. The results reveal differences in waking up times and evening routines, commuting behaviour during weekends and holidays, and water consumption. The pollutant profiles contribute to a better understanding of pollution generation in households and catchment activities. Flows and COD correlate well at all stations, but there are differences in conductivity and HS- at the station level. The article concludes by discussing the operational experience of the monitoring stations.


Assuntos
Monitoramento Ambiental , Águas Residuárias , Monitoramento Ambiental/métodos , Esgotos/análise , Chuva , Análise da Demanda Biológica de Oxigênio , Cidades
2.
Environ Sci Technol ; 54(12): 7677-7686, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32412248

RESUMO

Wastewater (WW) reuse is expected to be increasingly indispensable in future water management to mitigate water scarcity. However, this increases the risk of antibiotic resistance (AR) dissemination via irrigation. Herein, a conventional (chlorination) and an advanced oxidation process (heterogeneous photocatalysis (HPC)) were used to disinfect urban WW to the same target of Escherichia coli <10 CFU/100 mL and used to irrigate lettuce plants (Lactuca sativa) set up in four groups, each receiving one of four water types, secondary WW (positive control), fresh water (negative control), chlorinated WW, and HPC WW. Four genes were monitored in water and soil, 16S rRNA as an indicator of total bacterial load, intI1 as a gene commonly associated with anthropogenic activity and AR, and two AR genes blaOXA-10 and qnrS. Irrigation with secondary WW resulted in higher dry soil levels of intI1 (from 1.4 × 104 copies/g before irrigation to 3.3 × 105 copies/g after). HPC-treated wastewater showed higher copy numbers of intI1 in the irrigated soil than chlorination, but the opposite was true for blaOXA-10. The results indicate that the current treatment is insufficient to prevent dissemination of AR markers and that HPC does not offer a clear advantage over chlorination.


Assuntos
Solo , Águas Residuárias , Irrigação Agrícola , Resistência Microbiana a Medicamentos/genética , Halogenação , RNA Ribossômico 16S , Eliminação de Resíduos Líquidos , Águas Residuárias/análise
3.
Environ Sci Technol ; 49(22): 13322-30, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26477990

RESUMO

The ubiquitous presence of cyclic volatile methylsiloxanes (cVMS) in the global atmosphere has recently raised environmental concern. In order to assess the persistence and long-range transport potential of cVMS, their second-order rate constants (k) for reactions with hydroxyl radical ((•)OH) in the gas phase are needed. We experimentally and theoretically investigated the kinetics and mechanism of (•)OH oxidation of a series of cVMS, hexamethylcyclotrisiloxane (D3), octamethycyclotetrasiloxane (D4), and decamethycyclopentasiloxane (D5). Experimentally, we measured k values for D3, D4, and D5 with (•)OH in a gas-phase reaction chamber. The Arrhenius activation energies for these reactions in the temperature range from 313 to 353 K were small (-2.92 to 0.79 kcal·mol(-1)), indicating a weak temperature dependence. We also calculated the thermodynamic and kinetic behaviors for reactions at the M06-2X/6-311++G**//M06-2X/6-31+G** level of theory over a wider temperature range of 238-358 K that encompasses temperatures in the troposphere. The calculated Arrhenius activation energies range from -2.71 to -1.64 kcal·mol(-1), also exhibiting weak temperature dependence. The measured k values were approximately an order of magnitude higher than the theoretical values but have the same trend with increasing size of the siloxane ring. The calculated energy barriers for H-atom abstraction at different positions were similar, which provides theoretical support for extrapolating k for other cyclic siloxanes from the number of abstractable hydrogens.


Assuntos
Poluentes Atmosféricos/química , Siloxanas/química , Atmosfera , Gases/química , Hidrogênio/química , Radical Hidroxila/química , Cinética , Modelos Químicos , Oxirredução , Temperatura , Termodinâmica
4.
J Hazard Mater ; 468: 133803, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38377910

RESUMO

Micro and nanosized plastics (MNPs), and a range of associated additive chemicals, have become pervasive contaminants that humans and the environment are exposed to everyday. However, one of the principal challenges in their analysis is adequate strategies to minimise background contamination. Here a blueprint for a specialised plastics and additive-minimised clean room laboratory built for this purpose is presented. Common laboratory construction materials (n = 23) were tested, including acoustic baffles, ceiling materials, floor materials, glazing rubber, and silicone sealant. The % polymer content ranged from 2-76% w/w while the sum concentration of six phthalates ranged from 0.81 (0.73-0.86) to 21000 (15000-27000) mg/kg, assigning many of these materials as inappropriate for use in a clean room environment. The final design of the laboratory consisted of three interconnected rooms, operated under positive pressure with the inner rooms constructed almost entirely of stainless steel. Background concentrations of MNPs and phthalates in the new laboratory were compared to two Physical Containment Level 2 (PC2) laboratory environments, with concentrations of MNPs reduced by > 100 times and phthalates reduced by up to 120 times. This study reports the first known clean room of its kind and provides a blueprint for reference and use by future plastics research.

5.
Sci Total Environ ; 872: 162116, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-36773920

RESUMO

During the last three years, various restrictions have been set up to limit the transmission of the Coronavirus Disease (COVID-19). While these rules apply at a large scale (e.g., country-wide level) human-to-human transmission of the virus that causes COVID-19, the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), occurs at a small scale. Different preventive policies and testing protocols were implemented in buildings where COVID-19 poses a threat (e.g., elderly residences) or constitutes a disruptive force (e.g., schools). In this study, we sampled sewage from different buildings (a school, a university campus, a university residence, and an elderly residence) that host residents of different levels of vulnerability. Our main goal was to assess the agreement between the SARS-CoV-2 concentration in wastewater and the policies applied in these buildings. All buildings were sampled using passive samplers while 24 h composite samples were also collected from the elderly residence. Results showed that passive samplers performed comparably well to composite samples while being cost-effective to keep track of COVID-19 prevalence. In the elderly residence, the comparison of sampling protocols (passive vs. active) combined with the strict clinical testing allowed us to compare the sensitivities of the two methods. Active sampling was more sensitive than passive sampling, as the former was able to detect a COVID-19 prevalence of 0.4 %, compared to a prevalence of 2.2 % for passive sampling. The number of COVID-19-positive individuals was tracked clinically in all the monitored buildings. More frequent detection of SARS-CoV-2 in wastewater was observed in residential buildings than in non-residential buildings using passive samplers. In all buildings, sewage surveillance can be used to complement COVID-19 clinical testing regimes, as the detection of SARS-CoV-2 in wastewater remained positive even when no COVID-19-positive individuals were reported. Passive sampling is useful for building managers to adapt their COVID-19 mitigation policies.


Assuntos
COVID-19 , Esgotos , Idoso , Humanos , Águas Residuárias , SARS-CoV-2 , Habitação , COVID-19/epidemiologia
6.
Top Curr Chem (Cham) ; 378(1): 7, 2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31840195

RESUMO

Heterogeneous photocatalysis (HPC) has been widely investigated in recent decades for the removal of a number of contaminants from aqueous matrices, but its application in real wastewater treatment at full scale is still scarce. Indeed, process and technological limitations have made HPC uncompetitive with respect to consolidated processes/technologies so far. In this manuscript, these issues are critically discussed and reviewed with the aim of providing the reader with a realistic picture of the prospective application of HPC in wastewater treatment. Accordingly, consolidated and new photocatalysts (among which the visible active ones are attracting increasing interest among the scientific community), along with preparation methods, are reviewed to understand whether, with increased process efficiency, these methods can be realistically and competitively developed at industrial scale. Precipitation is considered as an attractive method for photocatalyst preparation at the industrial scale; sol-gel and ultrasound may be feasible only if no expensive metal precursor is used, while hydrothermal and solution combustion synthesis are expected to be difficult (expensive) to scale up. The application of HPC in urban and industrial wastewater treatment and possible energy recovery by hydrogen production are discussed in terms of current limitations and future prospects. Despite the fact that HPC has been studied for the removal of pollutants in aqueous matrices for two decades, its use in wastewater treatment is still at a "technological research" stage. In order to accelerate the adoption of HPC at full scale, it is advisable to focus on investigations under real conditions and on developing/improving pilot-scale reactors to better investigate scale-up conditions and the potential to successfully address specific challenges in wastewater treatment through HPC. In realistic terms, the prospective use of HPC is more likely as a tertiary treatment of wastewater, particularly if more stringent regulations come into force, than as pretreatment for industrial wastewater to improve biodegradability.


Assuntos
Luz , Raios Ultravioleta , Eliminação de Resíduos Líquidos/métodos , Bactérias/efeitos da radiação , Biodegradação Ambiental , Catálise , Metais/química , Poluentes Químicos da Água/química
7.
RSC Adv ; 8(46): 26124-26132, 2018 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35541927

RESUMO

Heterogeneous photocatalysis (HPC) is a subset of Advanced Oxidation Processes (AOPs) with potential future applications in water disinfection. Herein, a zinc oxide photocatalyst was doped with cerium at various atomic ratios ranging from 0 to 0.1 Ce : Zn. Keeping in mind that the application of HPC is often limited by its cost of use, a simple and easy to upscale method, that is the hydroxide induced hydrolysis of zinc nitrate in the presence of Ce3+ followed by calcination at 300 °C, was used to synthesise the catalysts. The catalysts have been characterized by different techniques such as X-ray diffraction (XRD), UV-vis diffuse reflectance (UV-vis DRS) and Raman spectroscopy. XRD results showed that Ce3+ ions were successfully incorporated into the ZnO lattice. UV-vis DRS spectra evidenced that Ce-ZnO samples present band-gap values of about 2.97 eV, lower than those of undoped ZnO (3.21 eV). These various photocatalysts, at 0.1 g L-1 in saline 0.85%, were used to inactivate Escherichia coli previously isolated from an urban wastewater treatment plant. Higher atomic ratios of Ce in the ZnO lattice, as confirmed by XRD and Raman spectroscopy, showed significant improvements to the inactivation rate; the resulting recommended optimum cerium loading of 0.04 : 1 Ce : Zn gave multiple orders of magnitude higher rate of inactivation after 60 min of treatment when compared to un-doped ZnO. This optimum loading of cerium was faster than the de facto literature standard TiO2-P25 tested under identical conditions.

8.
Environ Int ; 115: 312-324, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29626693

RESUMO

Wastewater is among the most important reservoirs of antibiotic resistance in urban environments. The abundance of carbon sources and other nutrients, a variety of possible electron acceptors such as oxygen or nitrate, the presence of particles onto which bacteria can adsorb, or a fairly stable pH and temperature are examples of conditions favouring the remarkable diversity of microorganisms in this peculiar habitat. The wastewater microbiome brings together bacteria of environmental, human and animal origins, many harbouring antibiotic resistance genes (ARGs). Although numerous factors contribute, mostly in a complex interplay, for shaping this microbiome, the effect of specific potential selective pressures such as antimicrobial residues or metals, is supposedly determinant to dictate the fate of antibiotic resistant bacteria (ARB) and ARGs during wastewater treatment. This paper aims to enrich the discussion on the ecology of ARB&ARGs in urban wastewater treatment plants (UWTPs), intending to serve as a guide for wastewater engineers or other professionals, who may be interested in studying or optimizing the wastewater treatment for the removal of ARB&ARGs. Fitting this aim, the paper overviews and discusses: i) aspects of the complexity of the wastewater system and/or treatment that may affect the fate of ARB&ARGs; ii) methods that can be used to explore the resistome, meaning the whole ARB&ARGs, in wastewater habitats; and iii) some frequently asked questions for which are proposed addressing modes. The paper aims at contributing to explore how ARB&ARGs behave in UWTPs having in mind that each plant is a unique system that will probably need a specific procedure to maximize ARB&ARGs removal.


Assuntos
Farmacorresistência Bacteriana , Águas Residuárias/química , Águas Residuárias/microbiologia , Animais , Anti-Infecciosos/análise , Anti-Infecciosos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/genética , Humanos , Microbiota/efeitos dos fármacos , Microbiota/genética , Purificação da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA