Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Purinergic Signal ; 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38801619

RESUMO

Cutaneous melanoma (CM) poses a therapeutic challenge due to its aggressive nature and often limited response to conventional treatments. Exploring novel therapeutic targets is essential, and natural compounds have emerged as potential candidates. This study aimed to elucidate the impact of curcumin, a natural compound known for its anti-inflammatory, antioxidant, and anti-tumor properties, on metastatic melanoma cells, focusing on the purinergic system and immune responses. Human melanoma cell line SK-Mel-28 were exposed to different curcumin concentrations for either 6 or 24 h, after which we assessed components related to the purinergic system and the inflammatory cascade. Using RT-qPCR, we assessed the gene expression of CD39 and CD73 ectonucleotidases, as well as adenosine deaminase (ADA). Curcumin effectively downregulated CD39, CD73, and ADA gene expression. Flow cytometry analysis revealed that curcumin significantly reduced CD39 and CD73 protein expression at specific concentrations. Moreover, the A2A receptor's protein expression decreased across all concentrations. Enzymatic activity assays demonstrated that curcumin modulated CD39, CD73, and ADA activities, with effects dependent on concentration and duration of treatment. Extracellular ATP levels increased after 24 h of curcumin treatment, emphasizing its role in modulating hydrolytic activity. Curcumin also displayed anti-inflammatory properties by reducing NLRP3 gene expression and impacting the levels of key inflammatory cytokines. In conclusion, this study unveils the potential of curcumin as a promising adjuvant in CM treatment. Curcumin modulates the expression and activity of crucial components of the purinergic system and exhibits anti-inflammatory effects, indicating its potential therapeutic role in combating CM. These findings underscore curcumin's promise and warrant further investigation in preclinical and clinical settings for melanoma management.

2.
J Appl Toxicol ; 43(6): 799-807, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36542470

RESUMO

We analyzed the effects of pyriproxyfen (PPF) on oxidative stress and ovarian morphology in zebrafish. PPF (10-9  M) exposure increased reactive oxygen species generation in ovaries, in association with a decrease in glutathione content. The activities of glutathione S-transferase, superoxide dismutase, and catalase were increased, while γ-glutamyltransferase activity was not altered by pesticide treatment. The histology of ovarian tissue showed an increase in the number of previtellogenic oocytes I, and a decrease in the rate of vitellogenic oocyte (VIT) count, suggesting inhibition of follicular maturation. An increase in the thickness of the vitelline envelope was observed in VIT, as was a tendency toward an increase in atresia in the ovary of the PPF-treated group. These findings indicate that the deleterious effect of PPF on ovarian maturation is mediated by a redox imbalance and oxidative damage. So, PPF acts as an endocrine disruptor chemical and may compromise fish reproduction by reducing female fertility.


Assuntos
Ovário , Peixe-Zebra , Animais , Feminino , Folículo Ovariano/metabolismo , Estresse Oxidativo , Oócitos
3.
Toxicol Appl Pharmacol ; 454: 116245, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36116562

RESUMO

The present study investigated the effects of perinatal exposure to glyphosate-based herbicide (GBH) in offspring's liver. Pregnant Wistar rats were exposed to GBH (70 mg glyphosate/Kg body weight/day) in drinking water from gestation day 5 to postnatal day 15. The perinatal exposure to GBH increased 45Ca2+ influx in offspring's liver. Pharmacological tools indicated a role played by oxidative stress, phospholipase C (PLC) and Akt pathways, as well as voltage-dependent Ca2+ channel modulation on GBH-induced Ca2+ influx in offspring's liver. In addition, changes in the enzymatic antioxidant defense system, decreased GSH content, lipid peroxidation and protein carbonylation suggest a connection between GBH-induced hepatotoxic mechanism and redox imbalance. The perinatal exposure to GBH also increased the enzymatic activities of transaminases and gamma-glutamyl transferase in offspring's liver and blood, suggesting a pesticide-induced liver injury. Moreover, we detected increased iron levels in liver, blood and bone marrow of GBH-exposed rats, which were accompanied by increased transferrin saturation and decreased transferrin levels in blood. The levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were increased in the liver of rats perinatally exposed to GBH, which were associated with. Increased phospho-p65NFκB immunocontent. Therefore, we propose that excessive amounts of iron in offspring's liver, blood and bone marrow induced by perinatal exposure to GBH may account for iron-driven hepatotoxicity, which was associated with Ca2+ influx, oxidative damage and inflammation. Further studies will clarify whether these events can ultimately impact on liver function.


Assuntos
Água Potável , Herbicidas , Hepatopatias , Praguicidas , Animais , Antioxidantes , Feminino , Glicina/análogos & derivados , Herbicidas/toxicidade , Interleucina-6 , Ferro , Gravidez , Proteínas Proto-Oncogênicas c-akt , Ratos , Ratos Wistar , Transaminases , Transferrinas , Fator de Necrose Tumoral alfa , Fosfolipases Tipo C , Glifosato
4.
Mol Biol Rep ; 49(8): 7687-7695, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35650367

RESUMO

BACKGROUND: Head and neck cancer (HNC) comprises a spectrum of neoplasms that affect the upper aerodigestive tract and are the sixth most common cancers worldwide. Individuals with HNC exhibit various symptoms and metabolic changes, including immune alterations and alterations of the purinergic pathway, which may signal worse outcomes. Therefore, the purpose of this research was to measure the activity of purinergic ectoenzymes and interleukins in patients with HNC, oral cavity cancer, and larynx cancer. METHODS AND RESULTS: We recruited 32 patients and 33 healthy control subjects and performed the laboratory analyses. We identified dysregulation in the purinergic signaling pathway characterized by an increase in adenosine triphosphate (ATP) and adenosine monophosphate (AMP) hydrolysis and a decrease in the deamination of adenosine to inosine in these cancers (p < 0.05). These alterations were likely caused by increased activity of the ectoenzymes E-NTPDase and ecto-5'-nucleotidase and reduced adenosine deaminase activity. This dysregulation was associated with immune alterations, increased levels of IL-10, and decreased myeloperoxidase activity (p < 0.05), suggesting immunosuppression in these patients and suggesting possible accumulation of adenosine in the extracellular environment. CONCLUSIONS: Adenosine is a potent immunosuppressive molecule associated with tumor progression and immune evasion. Our findings suggest a relationship between extracellular purines and the development and progression of the tumor microenvironment and poor outcomes. These findings increase the understanding of biological mechanisms related to HNC and demonstrate that these components are potential diagnostic markers and therapeutic targets for future management strategies and improvement in the quality of life.


Assuntos
Neoplasias de Cabeça e Pescoço , Qualidade de Vida , Adenosina/metabolismo , Trifosfato de Adenosina , Humanos , Terapia de Imunossupressão , Microambiente Tumoral
5.
J Biochem Mol Toxicol ; 35(3): e22663, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33125183

RESUMO

Imidazo[1,2-a]pyridines (IP) and organoselenium compounds have been widely exploited in medicinal chemistry due to their pharmacological activities. Hepatocellular carcinoma (HCC) has few treatment options, and unfortunately, the prognosis is poor. Thus, the development of novel therapeutic drugs is urgent. The present study aimed at evaluating the antitumor mechanism of selenylated IP against HepG2 cells and in vivo. The selenylated IP named IP-Se-06 (3-((2-methoxyphenyl)selanyl)-7-methyl-2-phenylimidazol[1,2-a]pyridine) showed high cytotoxicity against HepG2 cells (half-maximal inhibitory concentration [IC50 ] = 0.03 µM) and selectivity for this tumor cell line. At nontoxic concentration, IP-Se-06 decreased the protein levels of Bcl-xL and increased the levels of p53, leading to inhibition of cell proliferation and apoptosis. This compound decreased the level of extracellular signal-regulated kinase 1/2 protein and changed the levels of proteins involved in the drive of the cell cycle, tumor growth, and survival (cyclin B1, cyclin-dependent kinase 2). In addition, IP-Se-06 decreased the number of cells in the S phase. In addition, IP-Se-06 led to increased generation of reactive oxygen species, changed antioxidant defenses, and caused DNA fragmentation. Finally, IP-Se-06 significantly inhibited the growth of Ehrlich ascites tumors in mice, increased survival time, and inhibited angiogenesis. Therefore, IP-Se-06 may be an important compound regarding the development of a therapeutic drug for HCC treatment.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Compostos Organosselênicos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Piridinas/farmacologia , Animais , Antineoplásicos/química , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Compostos Organosselênicos/química , Piridinas/química , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Mediators Inflamm ; 2019: 1468502, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31780857

RESUMO

The literature shows that phenolic compounds possess important antioxidant and anti-inflammatory activities; however, the mechanism underlying these effects is not elucidated yet. The genus Calea is used in folk medicine to treat rheumatism, respiratory diseases, and digestive problems. In this context, some phenolic compounds were isolated with high purity from Calea uniflora Less. and identified as noreugenin (NRG) and α-hydroxy-butein (AH-BU). The aim of this study was to analyze the effect of these compounds on cell viability, the activity of myeloperoxidase (MPO), and apoptosis of mouse neutrophils using ex vivo tests. Furthermore, the effect of these compounds on the cytokines, interleukin 1 beta (IL-1ß), interleukin 17A (IL-17A), and interleukin 10 (IL-10), and oxidative stress was investigated by analyzing lipid peroxidation (the concentration of thiobarbituric acid reactive substances (TBARS)) and activities of antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT), and glutathione S-transferase (GST), using a murine model of neutrophilic inflammation. The NRG and AH-BU reduce MPO activity and increase neutrophil apoptosis (p < 0.05). These compounds reduced the generation of oxygen reactive species and IL-1ß and IL-17A levels but increased IL-10 levels (p < 0.05). This study demonstrated that NRG and AH-BU show a significant anti-inflammatory effect by inhibiting the MPO activity and increasing neutrophil apoptosis in primary cultures of mouse neutrophils. These effects were at least partially associated with blocking reactive species generation, inhibiting IL-1ß and IL-17A, and increasing IL-10 levels.


Assuntos
Antioxidantes/uso terapêutico , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Fenóis/uso terapêutico , Pleurisia/tratamento farmacológico , Animais , Antioxidantes/química , Catalase/metabolismo , Modelos Animais de Doenças , Feminino , Glutationa Transferase/metabolismo , Interleucina-10/metabolismo , Interleucina-17/metabolismo , Interleucina-1beta/metabolismo , Masculino , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Peroxidase/metabolismo , Fenóis/química , Pleurisia/metabolismo , Superóxido Dismutase/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
8.
Alcohol Clin Exp Res ; 40(1): 52-61, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26727523

RESUMO

BACKGROUND: Alcohol abuse during pregnancy leads to intellectual disability and morphological defects in the offspring. The aim of this study was to determine the effect of chronic maternal ethanol (EtOH) consumption during pregnancy and lactation on glutamatergic transmission regulation, energy deficit, and oxidative stress in the hippocampus of the offspring. METHODS: EtOH was administered to dams in drinking water at increasing doses (2 to 20%) from the gestation day 5 to lactation day 21. EtOH and tap water intake by treated and control groups, respectively, were measured daily. RESULTS: Results showed that EtOH exposure does not affect fluid intake over the course of pregnancy and lactation. The toxicity of maternal exposure to EtOH was demonstrated by decreased offspring body weight at experimental age, on postnatal day 21. Moreover, maternal EtOH exposure decreased (45) Ca(2+) influx in the offspring's hippocampus. Corroborating this finding, EtOH increased both Na(+) -dependent and Na(+) -independent glial [(14) C]-glutamate uptake in hippocampus of immature rats. Also, maternal EtOH exposure decreased glutamine synthetase activity and induced aspartate aminotransferase enzymatic activity, suggesting that in EtOH-exposed offspring hippocampus, glutamate is preferentially used as a fuel in tricarboxylic acid cycle instead of being converted into glutamine. In addition, EtOH exposure decreased [U-14C]-2-deoxy-D-glucose uptake in offspring hippocampus. CONCLUSIONS: The decline in glucose transport coincided with increased lactate dehydrogenase activity, suggesting an adaptative response in EtOH-exposed offspring hippocampus, using lactate as an alternative fuel. These events were associated with oxidative damage, as demonstrated by changes in the enzymatic antioxidant defense system and lipid peroxidation. Taken together, the results demonstrate that maternal exposure to EtOH during pregnancy and lactation impairs glutamatergic transmission, as well as inducing oxidative stress and energy deficit in immature rat hippocampus.


Assuntos
Depressores do Sistema Nervoso Central/farmacologia , Etanol/farmacologia , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Hipocampo/efeitos dos fármacos , Exposição Materna , Neuroglia/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Animais , Animais Recém-Nascidos , Cálcio/metabolismo , Radioisótopos de Carbono , Feminino , Hipocampo/diagnóstico por imagem , Hipocampo/metabolismo , Lactação , Neuroglia/metabolismo , Gravidez , Cintilografia , Ratos , Ratos Wistar , Sódio/metabolismo
9.
Biochim Biophys Acta ; 1830(3): 2629-37, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23137442

RESUMO

BACKGROUND: The secretory activity of Sertoli cells (SC) is dependent on ion channel functions and protein synthesis and is critical to ongoing spermatogenesis. The aim of this study was to investigate the mechanism of action associated with a non-metabolizable amino acid [14C]-MeAIB (alpha-(methyl-amino)isobutyric acid) accumulation stimulated by T4 and the role of the integrin receptor in this event, and also to clarify whether the T4 effect on MeAIB accumulation and on Ca2+ influx culminates in cell secretion. METHODS: We have studied the rapid and plasma membrane initiated effects of T4 by using 45Ca2+ uptake and [45C]-MeAIB accumulation assays, respectively. Thymidine incorporation into DNA was used to monitor nuclear activity and quinacrine to analyze the secretory activity on SC. RESULTS: The stimulation of MeAIB accumulation byT4 appears to be mediated by the integrin receptor in the plasma membrane since tetrac and RGD peptide were able to nullify the effect of this hormone. In addition, T4 increases extracellular Ca2+ uptake and Ca2+ from intracellular stocks to enhance nuclear activity, but this genomic action seems not to influence SC secretion mediated by T4. Also, the cytoskeleton and CIC-3 chloride channel contribute to the membrane-associated responses of SC. CONCLUSIONS: T4 integrin receptor activation ultimately determines the plasma membrane responses on amino acid transport in SC, but it is not involved in calcium influx, cell secretion or the nuclear effect of the hormone. GENERAL SIGNIFICANCE: The integrin receptor activation by T4 may take a role in plasma membrane processes involved in the male reproductive system.


Assuntos
Membrana Celular/efeitos dos fármacos , Integrina alfaVbeta3/genética , Receptores de Superfície Celular/genética , Células de Sertoli/efeitos dos fármacos , Espermatogênese/fisiologia , Tiroxina/farmacologia , Aminoácidos/metabolismo , Ácidos Aminoisobutíricos/metabolismo , Animais , Animais Recém-Nascidos , Transporte Biológico/efeitos dos fármacos , Cálcio/metabolismo , Radioisótopos de Carbono , Canais de Cloreto/metabolismo , Citoesqueleto/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Integrina alfaVbeta3/metabolismo , Masculino , Oligopeptídeos/farmacologia , Ratos , Ratos Wistar , Receptores de Superfície Celular/metabolismo , Células de Sertoli/citologia , Células de Sertoli/fisiologia , Transdução de Sinais/efeitos dos fármacos , Espermatogênese/efeitos dos fármacos , Timidina/metabolismo , Tiroxina/análogos & derivados
10.
Toxicology ; 501: 153706, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38097130

RESUMO

This study aims to elucidate the mechanisms linking occupational pesticide exposure to depression among rural workers from Maravilha, Brazil. We assessed the mental health, oxidative, and inflammatory profiles of farmers exposed to pesticides (N = 28) and compared them to an urban control group without occupational exposure to pesticides (N = 25). Data on sociodemographic, occupational history, and clinical records were collected. Emotional states were evaluated using the State-Trait Anxiety Inventory (STAI) and Beck Depression Inventory (BDI). Biochemical, hematological, inflammatory, and redox parameters were examined in blood samples from both groups. Results showed educational disparities between groups and unveiled a concerning underutilization of personal protective equipment (PPEs) among farmers. Glyphosate was the predominant pesticide used by farmers. Farmers exhibited higher BDI scores, including more severe cases of depression. Additionally, elevated levels of creatinine, ALT, AST, and LDH were observed in farmers, suggesting potential renal and hepatic issues due to pesticide exposure. Oxidative stress markers, such as increased lipid peroxidation and superoxide dismutase (SOD) activity, along with decreased catalase (CAT) activity and ascorbic acid levels, were noted in the pesticide-exposed group compared to controls. Elevated levels of inflammatory cytokines, particularly IL-1ß, IL-6 and TNF-α, were also observed in pesticide-exposed group. Our findings suggest that inflammation, oxidative distress and lower educational levels may be associated with depression in pesticide-exposed farmers. This study highlights the impact of occupational pesticide exposure on the mental health of rural workers. The underuse of PPEs and the link between depressive symptoms, inflammation, and oxidative stress underscore the urgent need for improved safety measures in agricultural practices. Addressing these issues will contribute to a deeper understanding of the intricate relationship between environmental exposures and mental health outcomes.


Assuntos
Exposição Ocupacional , Praguicidas , Humanos , Praguicidas/toxicidade , Fazendeiros , Brasil/epidemiologia , Depressão/induzido quimicamente , Depressão/epidemiologia , Agricultura , Inflamação/induzido quimicamente , Inflamação/epidemiologia , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise , Oxirredução
11.
Biochim Biophys Acta ; 1823(10): 1708-19, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22743040

RESUMO

The involvement of calcium-mediated signaling pathways in the mechanism of action of 1α,25-dihydroxyvitamin D(3) (1,25D) is currently demonstrated. In this study we found that 1,25D induces nongenomic effects mediated by membrane vitamin D receptor (VDRm) by modulating intermediate filament (IF) phosphorylation and calcium uptake through L-type voltage-dependent calcium channels (L-VDCC) in cerebral cortex of 10 day-old rats. Results showed that the mechanism of action of 1,25D involves intra- and extracellular calcium levels, as well as the modulation of chloride and potassium channels. The effects of L-VDCCs on membrane voltage occur over a broad potential range and could involve depolarizing or hyperpolarizing coupling modes, supporting a cross-talk among Ca(2+) uptake and potassium and chloride channels. Also, the Na(+)/K(+)-ATPase inactivation by ouabain mimicked the 1,25D action on (45)Ca(2+) uptake. The Na(+)/K(+)-ATPase inhibition observed herein might lead to intracellular Na(+) accumulation with subsequent L-VDCC opening and consequently increased (45)Ca(2+) (calcium, isotope of mass 45) uptake. Moreover, the 1,25D effect is dependent on the activation of the following protein kinases: cAMP-dependent protein kinase (PKA), Ca(2+)/calmodulin-dependent protein kinase (PKCaMII), phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase p38 (p38(MAPK)). The modulation of calcium entry into neural cells by the 1,25D we are highlighting, might take a role in the regulation of a plethora of intracellular processes. Considering that vitamin D deficiency can lead to brain illness, 1,25D may be a possible candidate to be used, at least as an adjuvant, in the pharmacological therapy of neuropathological conditions.


Assuntos
Envelhecimento/metabolismo , Canais de Cálcio Tipo L/metabolismo , Cálcio/metabolismo , Córtex Cerebral/metabolismo , Filamentos Intermediários/metabolismo , Ativação do Canal Iônico/efeitos dos fármacos , Vitamina D/análogos & derivados , Envelhecimento/efeitos dos fármacos , Animais , Antígenos Nucleares/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Córtex Cerebral/efeitos dos fármacos , Canais de Cloreto/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas de Filamentos Intermediários/metabolismo , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Modelos Biológicos , Proteínas do Tecido Nervoso/metabolismo , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Canais de Potássio/metabolismo , Proteína Quinase C/metabolismo , Ratos , Receptores de Calcitriol/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Vitamina D/farmacologia
12.
Environ Pollut ; 331(Pt 2): 121888, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37244531

RESUMO

Pesticide exposure and poisoning may rise the risk of mental health problems and suicidal tendencies. To explore the potential connection between chronic occupational exposure to pesticides and depression, anxiety, and suicide-related outcomes in farmers, a systematic review was performed. Systematic review protocol is available in PROSPERO registration number CRD42022316285. A total of fifty-seven studies met inclusion criteria: twenty-nine on depression or other mental disorders, twelve on suicide (two of them on both depression and suicide), and fourteen on pesticide poisoning or self-poisoning and death. Among the fifty-seven selected studies, eighteen were conducted in Asia, seventeen in North America, fourteen in South America, seven in European Union, one in Africa, and one in Australia/Oceania. Selected studies demonstrated an increased prevalence of depressive disorders in farmworkers exposed to pesticides as well as an increased self-reported prevalence of depression in this population. Moreover, previous pesticide poisoning increased the risk estimates for depression or other mental disorders as compared with chronic pesticide exposure. Severe pesticide poisoning and multiple poisoning showed increased risks of depressive symptoms compared with milder cases. In addition, financial difficulties and poor health were positively correlated with depression. Among studies on suicide, nine of them found that suicide rates increased in areas devoted to agriculture with intensive pesticide consumption. Moreover, studies demonstrate a higher suicide risk among farmers. The present review suggests more attention to the farmer's mental health and more detailed studies on occupational exposure to the mixture of these compounds.


Assuntos
Exposição Ocupacional , Praguicidas , Suicídio , Humanos , Fazendeiros , Depressão/epidemiologia , Incidência , Agricultura , Ansiedade/epidemiologia
13.
Antioxidants (Basel) ; 12(10)2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37891904

RESUMO

Concerns have been raised regarding the potential adverse health effects of the ubiquitous herbicide glyphosate. Here, we investigated long-term effects of developmental exposure to a glyphosate-based herbicide (GBH) by analyzing serum melatonin levels and cellular changes in the striatum of adult male rats (90 days old). Pregnant and lactating rats were exposed to 3% GBH (0.36% glyphosate) through drinking water from gestational day 5 to postnatal day 15. The offspring showed reduced serum melatonin levels (43%) at the adult age compared with the control group. The perinatal exposure to GBH also induced long-term oxidative stress-related changes in the striatum demonstrated by increased lipid peroxidation (45%) and DNA/RNA oxidation (39%) together with increased protein levels of the antioxidant enzymes, superoxide dismutase (SOD1, 24%), glutamate-cysteine ligase (GCLC, 58%), and glutathione peroxidase 1 (GPx1, 31%). Moreover, perinatal GBH exposure significantly increased the total number of neurons (20%) and tyrosine hydroxylase (TH)-positive neurons (38%) in the adult striatum. Mechanistic in vitro studies with primary rat pinealocytes exposed to 50 µM glyphosate demonstrated a decreased melatonin secretion partially through activation of metabotropic glutamate receptor 3 (mGluR3), while higher glyphosate levels (100 or 500 µM) also reduced the pinealocyte viability. Since decreased levels of the important antioxidant and neuroprotector melatonin have been associated with an increased risk of developing neurodegenerative disorders, this demonstrates the need to consider the melatonin hormone system as a central endocrine-related target of glyphosate and other environmental contaminants.

14.
Environ Pollut ; 338: 122695, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37802286

RESUMO

The aim of the present study was to investigate the impacts of glyphosate herbicide on the survival and proliferation of glioblastoma cells and to explore the molecular mechanisms underlying such effects. For this, cultured human glioblastoma cell line, A172, was exposed to the glyphosate analytical standard, a glyphosate-based herbicide formulation (GBH), or the metabolite aminomethylphosphonic acid (AMPA). The three compounds induced A172 cytotoxicity after 24 h of exposure, with more prominent cytotoxic effects after 48 and 72 h of treatment. Further experiments were performed by treating A172 cells for 6 h with glyphosate, GBH, or AMPA at 0.5 mg/L, which corresponds to the maximum residue limits for glyphosate and AMPA in drinking water in Brazil. Colony forming units (CFU) assay showed that AMPA increased the number of CFU formed, while glyphosate and GBH increased the CFU sizes. The three compounds tested altered the cell cycle and caused DNA damage, as indicated by the increase in γ-H2AX. The mechanisms underlying the pesticide effects involve the activation of Akt and mitogen-activated protein kinases (MAPKs) signaling pathways, oxidative imbalance, and inflammation. Glyphosate led to NLRP3 activation culminating in caspase-1 recruitment, while AMPA decreased NLRP3 immunocontent and GBH did not alter this pathway. Results of the present study suggest that exposure to glyphosate (isolated or in formulation) or to its metabolite AMPA may affect cell signaling pathways resulting in oxidative damage and inflammation, giving glioblastoma cells an advantage by increasing their proliferation and growth.


Assuntos
Glioblastoma , Herbicidas , Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico , Estresse Oxidativo , Proliferação de Células , Herbicidas/metabolismo , Transdução de Sinais , Inflamação , Glifosato
15.
Oxid Med Cell Longev ; 2022: 3710449, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35360199

RESUMO

Glioblastoma multiforme (GBM) is a notably lethal brain tumor associated with high proliferation rate and therapeutic resistance, while currently effective treatment options are still lacking. Imidazo[1,2-a]pyridine derivatives and organoselenium compounds are largely used in medicinal chemistry and drug development. This study is aimed at further investigating the antitumor mechanism of IP-Se-06 (3-((2-methoxyphenyl)selanyl)-7-methyl-2-phenylimidazol[1,2-a]pyridine), a selenylated imidazo[1,2-a]pyridine derivative in glioblastoma cells. IP-Se-06 exhibited high cytotoxicity against A172 cells (IC50 = 1.8 µM) and selectivity for this glioblastoma cell. The IP-Se-06 compound has pharmacological properties verified in its ADMET profile, especially related to blood-brain barrier (BBB) permeability. At low concentration (1 µM), IP-Se-06 induced intracellular redox state modulation with depletion of TrxR and GSH levels as well as inhibition of NRF2 protein. IP-Se-06 also decreased mitochondrial membrane potential, induced cytochrome c release, and chromatin condensation. Furthermore, IP-Se-06 induced apoptosis by decreasing levels of Bcl-xL while increasing levels of γ-H2AX and p53 proteins. Treatment with IP-Se-06 induced cell cycle arrest and showed antiproliferative effect by inhibition of Akt/mTOR/HIF-1α and ERK 1/2 signaling pathways. In addition, IP-Se-06 displayed significant inhibition of p38 MAPK and p-p38, leading to inhibition of inflammasome complex proteins (NLRP3 and caspase-1) in glioblastoma cells. These collective findings demonstrated that IP-Se-06 is a bioactive molecule that can be considered a candidate for the development of a novel drug for glioblastoma treatment.


Assuntos
Glioblastoma , Apoptose , Linhagem Celular Tumoral , Glioblastoma/patologia , Humanos , Oxirredução , Proteínas Proto-Oncogênicas c-akt/metabolismo , Piridinas/farmacologia , Piridinas/uso terapêutico , Serina-Treonina Quinases TOR/metabolismo
16.
Biochemistry ; 50(47): 10284-92, 2011 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-22035182

RESUMO

1α,25-Dihydroxyvitamin D(3) (1,25D(3)) is the active metabolite of vitamin D(3) and the major calcium regulatory hormone in tissues. The aim of this work was to investigate the mechanism of action of 1,25D(3) on (45)Ca(2+) uptake in Sertoli cells from 30-day-old rats. Results showed that 10(-9) and 10(-12) M 1,25D(3) increased the rate of (45)Ca(2+) uptake 5 and 15 min after hormone exposure and that 1α,25(OH)(2) lumisterol(3) (JN) produced a similar effect suggesting that 1,25D(3) action occurs via a putative membrane receptor. The involvement of voltage-dependent calcium channels (VDCC) in 1,25D(3) action was evidenced by using nifedipine, while the use of Bapta-AM demonstrated that intracellular calcium was not implicated. Moreover, the incubation with ouabain and digoxin increased the rate of (45)Ca(2+) uptake, indicating that the effect of 1,25D(3) may also result from Na(+)/K(+)-ATPase inhibition. In addition, we demonstrated that the mechanism underlying the hormone action involved extracellular signal-regulated kinase (ERK) and protein kinase C (PKC) activation in a phospholipase C-independent way. Furthermore, a local elevation of the level of cAMP, as demonstrated by incubating cells with dibutyryl cAMP or a phosphodiesterase inhibitor, produced an effect similar to that of 1,25D(3), and the inhibition of protein kinase A (PKA) nullified the hormone action. In conclusion, the stimulatory effect of 1,25D(3) on (45)Ca(2+) uptake in Sertoli cells occurs via VDCC, as well as PKA, PKC, and ERK activation. These protein kinases seem to act by inhibiting Na(+)/K(+)-ATPase or directly phosphorylating calcium channels. The Na(+)/K(+)-ATPase inhibition may result in Na(+)/Ca(2+) exchanger activation in reverse mode and consequently induce the uptake of calcium into the cells.


Assuntos
Cálcio/metabolismo , Ratos/metabolismo , Células de Sertoli/metabolismo , Transdução de Sinais , Vitamina D/análogos & derivados , Animais , Transporte Biológico , Canais de Cálcio/metabolismo , Células Cultivadas , Masculino , Ratos/crescimento & desenvolvimento , Ratos Wistar , Testículo/citologia , Testículo/crescimento & desenvolvimento , Testículo/metabolismo , Fatores de Tempo , Vitamina D/metabolismo
17.
Arch Biochem Biophys ; 515(1-2): 46-53, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21933661

RESUMO

1α,25-Dihydroxyvitamin D(3) (1,25D(3)) is critical for the maintenance of normal reproduction since reduced fertility is observed in vitamin D-deficient male rats. The aim of this study was to investigate the effect of 1,25D(3) in 30-day-old rat testicular plasma membrane targets (calcium uptake and gamma-glutamyl transpeptidase (GGTP) activity), as well as to highlight the role of protein kinases in the mechanism of action of 1,25D(3). The results demonstrated that 1,25D(3) induced a fast increase in calcium uptake in rat testis through a nongenomic mechanism of action. This effect was dependent on PKA, PKC and MEK. Moreover, ionic channels, such as ATP- and Ca(2+)-dependent K(+) channels and Ca(2+)-dependent Cl(-) channels, are involved in the mechanism of action. The use of BAPTA-AM showed that [Ca(2+)](i) was also implicated, and the incubation with digoxin produced an increase in (45)Ca(2+) uptake indicating that the effect of 1,25D(3) may also result from Na(+)/K(+)-ATPase inhibition. In addition, 1,25D(3) was able to increase the GGTP activity. Considered together, our results indicate a PKA/PKC/MEK-dependent 1,25D(3) pathway as well as ionic involvement leading to (45)Ca(2+) uptake in immature rat testis. These findings demonstrate that 1,25D(3) stimulates calcium uptake and increases GGTP activity which may be involved in male reproductive functions.


Assuntos
Calcitriol/metabolismo , Canais Iônicos/metabolismo , Testículo/metabolismo , gama-Glutamiltransferase/metabolismo , Animais , Membrana Celular/metabolismo , Masculino , Ratos , Ratos Wistar , Testículo/enzimologia
18.
Neurotoxicology ; 85: 121-132, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34048864

RESUMO

Paraquat (1,1'-dimethyl-4,4'-bipyridinium dichloride; PQ) is a widely used herbicide in Brazilian crops, despite its banishment in many other countries. The present study investigated the effects of repeated dose of PQ on glutamate system, energy metabolism and redox parameters in the hippocampus of prepubertal rats. Twenty-two-day-old rats received daily intraperitoneal injections of PQ (10 mg/Kg) during 5 consecutive days and the effects of the pesticide were assessed 24 h after the last injection. The PQ exposure provoked cytotoxicity associated to decreased cell viability and increased glutamate excitotoxicity, as demonstrated by decreased 14C-glutamate uptake and increased 45Ca2+ uptake. Downregulated glutamine synthetase (GS) activity, further supports disrupted glutamate metabolism compromising the glutamate-glutamine cycle. Downregulated 14C-2-Deoxy-D-glucose indicates energy failure and upregulated lactate dehydrogenase (LDH) suggests the relevance of lactate as energy fuel. Aspartate aminotransferase (AST) and alanine aminotransferase (ALT) upregulation suggest Krebs cycle replenishment and piruvate production. In addition, PQ disturbed the redox status inducing lipid peroxidation, evaluated by increased TBARS and imbalanced antioxidant system. Downregulated glutathione reductase (GR), gamma-glutamyltransferase (GGT), glutathione-S-transferase (GST) and glucose-6-P-dehydrogenase (G6PD) activities together with upregulated superoxide dismutase (SOD) and catalase activities corroborate the oxidative imbalance. The mechanisms underlying PQ-induced neurotoxicity involves the modulation of GSK-3ß, NF-κB and NMDA receptors. These neurochemical and oxidative events observed may contribute to neuroinflammation and neurotoxic effects of PQ on hippocampal cells.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Herbicidas/toxicidade , Hipocampo/metabolismo , Paraquat/toxicidade , Maturidade Sexual/efeitos dos fármacos , Animais , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Metabolismo Energético/fisiologia , Hipocampo/efeitos dos fármacos , Masculino , Técnicas de Cultura de Órgãos , Oxirredução/efeitos dos fármacos , Ratos , Ratos Wistar , Maturidade Sexual/fisiologia
19.
Toxicology ; 461: 152922, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34474092

RESUMO

Glyphosate, the most used herbicide worldwide, has been suggested to induce neurotoxicity and behavioral changes in rats after developmental exposure. Studies of human glyphosate intoxication have reported adverse effects on the nervous system, particularly in substantia nigra (SN). Here we used matrix-assisted laser desorption ionization (MALDI) imaging mass spectrometry (IMS) to study persistent changes in peptide expression in the SN of 90-day-old adult male Wistar rats. The animals were perinatally exposed to 3 % GBH (glyphosate-based herbicide) in drinking water (corresponding to 0.36 % of glyphosate) starting at gestational day 5 and continued up to postnatal day 15 (PND15). Peptides are present in the central nervous system before birth and play a critical role in the development and survival of neurons, therefore, observed neuropeptide changes could provide better understanding of the GBH-induced long term effects on SN. The results revealed 188 significantly altered mass peaks in SN of animals perinatally exposed to GBH. A significant reduction of the peak intensity (P < 0.05) of several peptides from the opioid-related dynorphin family such as dynorphin B (57 %), alpha-neoendorphin (50 %), and its endogenous metabolite des-tyrosine alpha-neoendorphin (39 %) was detected in the GBH group. Immunohistochemical analysis confirmed a decreased dynorphin expression and showed a reduction of the total area of dynorphin immunoreactive fibers in the SN of the GBH group. In addition, a small reduction of dynorphin immunoreactivity associated with non-neuronal cells was seen in the hilus of the hippocampal dentate gyrus. Perinatal exposure to GBH also induced an increase in the number of nestin-positive cells in the subgranular zone of the dentate gyrus. In conclusion, the results demonstrate long-term changes in the adult male rat SN and hippocampus following a perinatal GBH exposure suggesting that this glyphosate-based formulation may perturb critical neurodevelopmental processes.


Assuntos
Dinorfinas/metabolismo , Glicina/análogos & derivados , Herbicidas/toxicidade , Síndromes Neurotóxicas/etiologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Feminino , Glicina/administração & dosagem , Glicina/toxicidade , Herbicidas/administração & dosagem , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Masculino , Síndromes Neurotóxicas/patologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/patologia , Ratos , Ratos Wistar , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Glifosato
20.
J Med Food ; 24(10): 1050-1057, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33769097

RESUMO

Eye diseases have a negative impact on the eyesight quality of the world population. The age-related macular degeneration (AMD) draws special attention since it is a chronic disorder characterized by oxidative and inflammatory damage to the retinal epithelial pigment, which triggers progressive vision loss. In the Brazilian Amazon, Astrocaryum aculeatum is an Amazonian fruit (Tucumã) used by riverside communities in traditional medicine to treat a number of ailments. These communities have recently shown to have increased longevity and reduced prevalence of age-related morbidity. Thus, the aim of this research was to chemically characterize and analyze the in vitro antioxidant effect and molecular damage prevention of the Tucumã ethanolic extract in retinal pigment epithelium (RPE) cells in a model for AMD. The extract was chemically characterized by ultra-high-performance liquid chromatography (HPLC) coupled with diode-array detection and mass spectrophotometry (HPLC-DAD-MS). In vitro protocols were performed, and the cytopreventive effect of Tucumã on RPE cells exposed to high concentrations of superoxide anion, an oxidant and genotoxic molecule, as well as the effect of Tucumã extract on oxidative and molecular makers were assessed. Biochemical and flow cytometry analyses were conducted in these protocols. The extract presents high concentrations of caffeic acid, gallic acid, catechin, luteolin, quercetin, and rutin. Treatment did not show cytotoxic effects in cells treated only with extract at 50 µg/mL. In fact, it improved cell viability and was able to prevent necrosis and apoptosis, and oxidative and molecular damage was significantly reduced. In summary, Tucumã is an important Amazon fruit, which seems to contribute significantly to improve human health conditions, as our findings suggest that its extract has a relevant chemical matrix rich in antioxidant molecules, and its consumption could improve eye health and contribute to prevention against oxidative stress through cytoprevention, reactive oxygen species reduction, and maintenance of DNA integrity in retinal pigment epithelium (RPE) cells.


Assuntos
Arecaceae , Epitélio Pigmentado da Retina , Dano ao DNA , Humanos , Oxirredução , Estresse Oxidativo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA