Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Physiol Heart Circ Physiol ; 322(4): H493-H522, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34951543

RESUMO

The photoplethysmogram (PPG) signal is widely measured by clinical and consumer devices, and it is emerging as a potential tool for assessing vascular age. The shape and timing of the PPG pulse wave are both influenced by normal vascular aging, changes in arterial stiffness and blood pressure, and atherosclerosis. This review summarizes research into assessing vascular age from the PPG. Three categories of approaches are described: 1) those which use a single PPG signal (based on pulse wave analysis), 2) those which use multiple PPG signals (such as pulse transit time measurement), and 3) those which use PPG and other signals (such as pulse arrival time measurement). Evidence is then presented on the performance, repeatability and reproducibility, and clinical utility of PPG-derived parameters of vascular age. Finally, the review outlines key directions for future research to realize the full potential of photoplethysmography for assessing vascular age.


Assuntos
Fotopletismografia , Rigidez Vascular , Pressão Sanguínea/fisiologia , Hemodinâmica , Análise de Onda de Pulso , Reprodutibilidade dos Testes , Rigidez Vascular/fisiologia
2.
Sensors (Basel) ; 22(13)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35808386

RESUMO

(1) Background: Diabetes mellitus (DM) is a chronic, metabolic disease characterized by elevated levels of blood glucose. Recently, some studies approached the diabetes care domain through the analysis of the modifications of cardiovascular system parameters. In fact, cardiovascular diseases are the first leading cause of death in diabetic subjects. Thanks to their cost effectiveness and their ease of use, electrocardiographic (ECG) and photoplethysmographic (PPG) signals have recently been used in diabetes detection, blood glucose estimation and diabetes-related complication detection. This review's aim is to provide a detailed overview of all the published methods, from the traditional (non machine learning) to the deep learning approaches, to detect and manage diabetes using PPG and ECG signals. This review will allow researchers to compare and understand the differences, in terms of results, amount of data and complexity that each type of approach provides and requires. (2) Method: We performed a systematic review based on articles that focus on the use of ECG and PPG signals in diabetes care. The search was focused on keywords related to the topic, such as "Diabetes", "ECG", "PPG", "Machine Learning", etc. This was performed using databases, such as PubMed, Google Scholar, Semantic Scholar and IEEE Xplore. This review's aim is to provide a detailed overview of all the published methods, from the traditional (non machine learning) to the deep learning approaches, to detect and manage diabetes using PPG and ECG signals. This review will allow researchers to compare and understand the differences, in terms of results, amount of data and complexity that each type of approach provides and requires. (3) Results: A total of 78 studies were included. The majority of the selected studies focused on blood glucose estimation (41) and diabetes detection (31). Only 7 studies focused on diabetes complications detection. We present these studies by approach: traditional, machine learning and deep learning approaches. (4) Conclusions: ECG and PPG analysis in diabetes care showed to be very promising. Clinical validation and data processing standardization need to be improved in order to employ these techniques in a clinical environment.


Assuntos
Diabetes Mellitus , Fotopletismografia , Algoritmos , Glicemia/metabolismo , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/terapia , Eletrocardiografia , Humanos , Fotopletismografia/métodos
3.
Physiol Meas ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38838703

RESUMO

Vascular ageing is the deterioration of arterial structure and function which occurs naturally with age, and which can be accelerated with disease. Measurements of vascular ageing are emerging as markers of cardiovascular risk, with potential applications in disease diagnosis and prognosis, and for guiding treatments. However, vascular ageing is not yet routinely assessed in clinical practice. A key step towards this is the development of technologies to assess vascular ageing. In this Roadmap, experts discuss several aspects of this process, including: measurement technologies; the development pipeline; clinical applications; and future research directions. The Roadmap summarises the state of the art, outlines the major challenges to overcome, and identifies potential future research directions to address these challenges.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38082838

RESUMO

Retinopathy is one of the most common micro vascular impairments in diabetic subjects. Elevated blood glucose leads to capillary occlusion, provoking the uncontrolled increase in local growth of new vessels in the retina. When left untreated, it can lead to blindness. Traditional approaches for retinopathy detection require expensive devices and high specialized personnel. Being a microvascular complication, the retinopathy could be detected using the photoplethysmography (PPG) technology. In this paper we investigate the predictive value of the pulse wave velocity and PPG signal analysis with machine and deep learning approaches to detect retinopathy in diabetic subjects. PPG signals and pulse wave velocity (PWV) showed promising results in assessing the diabetic retinopathy. The best performances were scored by a LightGBM based model trained over a subset of the available dataset obtaining 80% of specificity and sensitivity.Clinical relevance- PPG based retinopathy detection could make the retinopathy detection more accessible since it does not need neither expensive devices for signal acquisition nor highly specialized personnel to be interpreted.


Assuntos
Aprendizado Profundo , Diabetes Mellitus , Retinopatia Diabética , Humanos , Fotopletismografia , Retinopatia Diabética/diagnóstico , Análise de Onda de Pulso , Medição de Risco
5.
Front Physiol ; 14: 1176753, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37954447

RESUMO

Photopletysmography (PPG) is a non-invasive and well known technology that enables the recording of the digital volume pulse (DVP). Although PPG is largely employed in research, several aspects remain unknown. One of these is represented by the lack of information about how many waveform classes best express the variability in shape. In the literature, it is common to classify DVPs into four classes based on the dicrotic notch position. However, when working with real data, labelling waveforms with one of these four classes is no longer straightforward and may be challenging. The correct identification of the DVP shape could enhance the precision and the reliability of the extracted bio markers. In this work we proposed unsupervised machine learning and deep learning approaches to overcome the data labelling limitations. Concretely we performed a K-medoids based clustering that takes as input 1) DVP handcrafted features, 2) similarity matrix computed with the Derivative Dynamic Time Warping and 3) DVP features extracted from a CNN AutoEncoder. All the cited methods have been tested first by imposing four medoids representative of the Dawber classes, and after by automatically searching four clusters. We then searched the optimal number of clusters for each method using silhouette score, the prediction strength and inertia. To validate the proposed approaches we analyse the dissimilarities in the clinical data related to obtained clusters.

6.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 902-905, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34891436

RESUMO

Photoplethysmography (PPG) is a non-invasive and cost-efficient optical technique used to assess blood volume variation inside the micro-circulation. PPG technology is widely used in a variety of clinical and non-clinical devices in order to investigate the cardiovascular system. One example of clinical PPG device is the pulse oxymeter, while non-clinical PPG devices include smartphones and smartwatches. Such a wide diffusion of PPG devices generates plenty of different PPG signals that differ from each other. In fact, intrinsic device characteristics strongly influence PPG waveform. In this paper we investigate transfer learning approaches on a Covolutional Neural Network based quality assessment method in order to generalize our model across different PPG devices. Our results show that our model is able to classify accurately signal quality over different PPG datasets while requiring a small amount of data for fine-tuning.Clinical relevance- A precise detection and extraction of high quality PPG segments could enhance significantly the reliability of the medical analysis based on the signal.


Assuntos
Redes Neurais de Computação , Fotopletismografia , Frequência Cardíaca , Aprendizado de Máquina , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA