Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Cell Mol Life Sci ; 81(1): 128, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472451

RESUMO

Epigenetic dysregulation that leads to alterations in gene expression and is suggested to be one of the key pathophysiological factors of Parkinson's disease (PD). Here, we found that α-synuclein preformed fibrils (PFFs) induced histone H3 dimethylation at lysine 9 (H3K9me2) and increased the euchromatic histone methyltransferases EHMT1 and EHMT2, which were accompanied by neuronal synaptic damage, including loss of synapses and diminished expression levels of synaptic-related proteins. Furthermore, the levels of H3K9me2 at promoters in genes that encode the synaptic-related proteins SNAP25, PSD95, Synapsin 1 and vGLUT1 were increased in primary neurons after PFF treatment, which suggests a linkage between H3K9 dimethylation and synaptic dysfunction. Inhibition of EHMT1/2 with the specific inhibitor A-366 or shRNA suppressed histone methylation and alleviated synaptic damage in primary neurons that were treated with PFFs. In addition, the synaptic damage and motor impairment in mice that were injected with PFFs were repressed by treatment with the EHMT1/2 inhibitor A-366. Thus, our findings reveal the role of histone H3 modification by EHMT1/2 in synaptic damage and motor impairment in a PFF animal model, suggesting the involvement of epigenetic dysregulation in PD pathogenesis.


Assuntos
Transtornos Motores , Doença de Parkinson , Animais , Camundongos , Histonas/metabolismo , Metilação , Neurônios/metabolismo , alfa-Sinucleína/metabolismo
2.
Nat Chem Biol ; 17(12): 1314-1323, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34608293

RESUMO

Spindle position control is essential for cell fate determination and organogenesis. Early studies indicate the essential role of the evolutionarily conserved Gαi/LGN/NuMA network in spindle positioning. However, the regulatory mechanisms that couple astral microtubules dynamics to the spindle orientation remain elusive. Here we delineated a new mitosis-specific crotonylation-regulated astral microtubule-EB1-NuMA interaction in mitosis. EB1 is a substrate of TIP60, and TIP60-dependent crotonylation of EB1 tunes accurate spindle positioning in mitosis. Mechanistically, TIP60 crotonylation of EB1 at Lys66 forms a dynamic link between accurate attachment of astral microtubules to the lateral cell cortex defined by NuMA-LGN and fine tune of spindle positioning. Real-time imaging of chromosome movements in HeLa cells expressing genetically encoded crotonylated EB1 revealed the importance of crotonylation dynamics for accurate control of spindle orientation during metaphase-anaphase transition. These findings delineate a general signaling cascade that integrates protein crotonylation with accurate spindle positioning for chromosome stability in mitosis.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Lisina Acetiltransferase 5/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Fuso Acromático/metabolismo , Sequência de Aminoácidos , Cromossomos/ultraestrutura , Escherichia coli/genética , Células HeLa , Humanos , Cinética , Mitose , Ligação Proteica , Conformação Proteica
3.
J Biol Chem ; 297(2): 100929, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34216621

RESUMO

The NAD+-dependent deacetylase Sirt1 has been implicated in the prevention of many age-related diseases, including cancer, type 2 diabetes, and cardiovascular disease. Resveratrol, a plant polyphenol, exhibits antiaging, antitumor, and vascular protection effects by activating Sirt1. However, the molecular mechanism of Sirt1 activation as induced by resveratrol remains unclear. By knockdown/rescue experiments, fluorometric Sirt1 activity assay, immunoprecipitation, and pull-down assays, we identify here that the tumor suppressor LKB1 (liver kinase B1) as a direct activator of Sirt1 elicited by resveratrol. Resveratrol promotes the binding between LKB1 and Sirt1, which we first reported, and this binding leads to LKB1-mediated phosphorylation of Sirt1 at three different serine residues in the C terminus of Sirt1. Mechanistically, LKB1-mediated phosphorylation increases intramolecular interactions in Sirt1, such as the binding of the C terminus to the deacetylase core domain, thereby eliminating DBC1 (Deleted in Breast Cancer 1, Sirt1 endogenous inhibitor) inhibition and promoting Sirt1-substrate interaction. Functionally, LKB1-dependent Sirt1 activation increases mitochondrial biogenesis and respiration through deacetylation and activation of the transcriptional coactivator PGC-1α. These results identify Sirt1 as a context-dependent target of LKB1 and suggest that a resveratrol-stimulated LKB1-Sirt1 pathway plays a vital role in mitochondrial metabolism, a key physiological process that contributes to numerous age-related diseases.


Assuntos
Resveratrol/farmacologia , Sirtuína 1 , Acetilação/efeitos dos fármacos , Humanos , Mitocôndrias/metabolismo , Biogênese de Organelas , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
4.
BMC Plant Biol ; 22(1): 366, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35871642

RESUMO

Nitrate is an essential nutrient and an important signaling molecule in plants. However, the molecular mechanisms by which plants perceive nitrate deficiency signaling are still not well understood. Here we report that AtNLP7 protein transport from the nucleus to the cytoplasm in response to nitrate deficiency is dependent on the N-terminal GAF domain. With the deletion of the GAF domain, AtNLP7ΔGAF always remains in the nucleus regardless of nitrate availability. AtNLP7 ΔGAF also shows reduced activation of nitrate-induced genes due to its impaired binding to the nitrate-responsive cis-element (NRE) as well as decreased growth like nlp7-1 mutant. In addition, AtNLP7ΔGAF is unable to mediate the reduction of reactive oxygen species (ROS) accumulation upon nitrate treatment. Our investigation shows that the GAF domain of AtNLP7 plays a critical role in the sensing of nitrate deficiency signal and in the nitrate-triggered ROS signaling process.


Assuntos
Regulação da Expressão Gênica de Plantas , Nitratos , Nitratos/metabolismo , Plantas/genética , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
5.
EMBO Rep ; 21(4): e49269, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32128961

RESUMO

Accumulating evidence suggests that p53 plays a suppressive role in cancer metastasis, yet the underlying mechanism remains largely unclear. Regulation of actin dynamics is essential for the control of cell migration, which is an important step in metastasis. The Arp2/3 complex is a major nucleation factor to initiate branched actin polymerization that drives cell migration. However, it is unknown whether p53 could suppress metastasis through modulating Arp2/3 function. Here, we report that WDR63 is transcriptionally upregulated by p53. We show with migration assays and mouse xenograft models that WDR63 negatively regulates cell migration, invasion, and metastasis downstream of p53. Mechanistically, WDR63 interacts with the Arp2/3 complex and inhibits Arp2/3-mediated actin polymerization. Furthermore, WDR63 overexpression is sufficient to dampen the increase in cell migration, invasion, and metastasis induced by p53 depletion. Together, these findings suggest that WDR63 is an important player in the regulation of Arp2/3 function and also implicate WDR63 as a critical mediator of p53 in suppressing metastasis.


Assuntos
Actinas , Neoplasias , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Actinas/genética , Actinas/metabolismo , Animais , Camundongos , Polimerização , Proteína Supressora de Tumor p53/genética
6.
Cell Mol Life Sci ; 78(1): 373-384, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32318758

RESUMO

Faithful chromosome segregation during mitosis requires the correct assembly of kinetochore on the centromere. CENP-A is a variant of histone H3, which specializes the centromere region on chromatin and mediates the kinetochore assembly. The Mis18 complex plays a critical role in initiating the centromere loading of the newly-synthesized CENP-A. However, it remains unclear how Mis18 complex (spMis18, spMis16 and spMis19) is located to the centromere to license the recruitment of Cnp1CENP-A in Schizosaccharomyces pombe. We found that spMis18 directly binds to nucleosomal DNA through its extreme C-terminus and interacts with H2A-H2B dimer via the acidic region on the surface of its Yippee-like domain. Live-cell imaging confirmed that mutation of the acidic region and deletion of the extreme C-terminus significantly impairs the localization of spMis18 and Cnp1 to the centromere and delays chromosome segregation during mitosis. Our findings illustrate that the interaction of spMis18 with histone H2A-H2B and DNA plays important roles in the recruitment of spMis18 and Cnp1 to the centromere in fission yeast.


Assuntos
Proteínas de Transporte/metabolismo , DNA/metabolismo , Histonas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/genética , Centrômero/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos , Cristalografia por Raios X , DNA/química , Dimerização , Histonas/genética , Microscopia de Fluorescência , Mitose , Simulação de Dinâmica Molecular , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Mutagênese , Ligação Proteica , Domínios Proteicos , Estrutura Terciária de Proteína , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Imagem com Lapso de Tempo
7.
Arch Biochem Biophys ; 708: 108898, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-33957092

RESUMO

NAD+-linked isocitrate dehydrogenases (NAD-IDHs) catalyze the oxidative decarboxylation of isocitrate into α-ketoglutarate. Previously, we identified a novel phylogenetic clade including NAD-IDHs from several algae in the type II subfamily, represented by homodimeric NAD-IDH from Ostreococcus tauri (OtIDH). However, due to its lack of a crystalline structure, the molecular mechanisms of the ligand binding and catalysis of OtIDH are little known. Here, we elucidate four high-resolution crystal structures of OtIDH in a ligand-free and various ligand-bound forms that capture at least three states in the catalytic cycle: open, semi-closed, and fully closed. Our results indicate that OtIDH shows several novel interactions with NAD+, unlike type I NAD-IDHs, as well as a strictly conserved substrate binding mode that is similar to other homologs. The central roles of Lys283' in dual coenzyme recognition and Lys234 in catalysis were also revealed. In addition, the crystal structures obtained here also allow us to understand the catalytic mechanism. As expected, structural comparisons reveal that OtIDH has a very high structural similarity to eukaryotic NADP+-linked IDHs (NADP-IDHs) within the type II subfamily rather than with the previously reported NAD-IDHs within the type I subfamily. It has also been demonstrated that OtIDH exhibits substantial conformation changes upon ligand binding, similar to eukaryotic NADP-IDHs. These results unambiguously support our hypothesis that OtIDH and OtIDH-like homologs are possible evolutionary ancestors of eukaryotic NADP-IDHs in type II subfamily.


Assuntos
Clorófitas/enzimologia , Evolução Molecular , Isocitrato Desidrogenase/química , Isocitrato Desidrogenase/metabolismo , NADP/metabolismo , NAD/metabolismo , Homologia de Sequência de Aminoácidos , Sequência de Aminoácidos , Coenzimas/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Filogenia , Multimerização Proteica , Estrutura Quaternária de Proteína
8.
Biochem J ; 476(2): 211-223, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30523058

RESUMO

Histone modification is a ubiquitous regulatory mechanism involved in a variety of biological processes, including gene expression, DNA damage repair, cell differentiation, and ontogenesis. Succinylation sites on histones have been identified and may have functional consequences. Here, we demonstrate that human sirtuin 5 (Sirt5) catalyzes the sequence-selective desuccinylation of numerous histone succinyl sites. Structural studies of Sirt5 in complex with four succinyl peptides indicate an essential role for the conserved main chain hydrogen bonds formed by the succinyl lysine (0), +1, and +3 sites for substrate-enzyme recognition. Furthermore, biochemical assays reveal that the proline residue at the +1 site of the histone succinylation substrate is unfavorable for Sirt5 interaction. Our findings illustrate the molecular mechanism underlying the sequence-selective desuccinylase activity of Sirt5 and provide insights for further studies of the biological functions associated with histone succinylation and Sirt5.


Assuntos
Histonas/química , Peptídeos/química , Processamento de Proteína Pós-Traducional , Sirtuínas/química , Ácido Succínico/química , Histonas/genética , Histonas/metabolismo , Humanos , Peptídeos/genética , Peptídeos/metabolismo , Sirtuínas/genética , Sirtuínas/metabolismo , Relação Estrutura-Atividade , Ácido Succínico/metabolismo
9.
Biotechnol Lett ; 42(5): 787-795, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31970556

RESUMO

Staphylococcus aureus is an anaerobic facultative microorganism that features the NreABC system for nitrate respiration. NreB is the sensor histidine kinase that phosphorylates the response regulator NreC to stimulate the expression of target genes. NreA is a nitrate sensor which dissociates from NreB in the present of nitrate and relieves its inhibition on NreB. However, the molecular basis of how NreA regulate NreB remains unknown. In this study, we determined the crystal structures of nitrate-bound NreA from S. aureus (SaNreA/NO3-) and its apoNreA-like mutant SaNreAY94A in complex with ethanediol (SaNreAY94A/EDO). Structural comparison reveals that the C-terminal loop in SaNreA/NO3- rearranges to an α-helix (α7) in SaNreAY94A/EDO, which converts an acidic pocket on the surface to a positively charged region. This conformational change of SaNreA C-terminus might play a role in SaNreB binding.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Histidina Quinase/química , Histidina Quinase/genética , Nitratos/metabolismo , Staphylococcus aureus/metabolismo , Proteínas de Bactérias/metabolismo , Clonagem Molecular , Cristalografia por Raios X , Histidina Quinase/metabolismo , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Staphylococcus aureus/química
10.
Proc Natl Acad Sci U S A ; 114(50): E10667-E10676, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29180432

RESUMO

Kinetochores are superprotein complexes that orchestrate chromosome segregation via a dynamic interaction with spindle microtubules. A physical connection between CENP-C and the Mis12-Ndc80-Knl1 (KMN) protein network is an important pathway that is used to assemble kinetochores on CENP-A nucleosomes. Multiple outer kinetochore components are phosphorylated by Aurora B kinase to activate the spindle assembly checkpoint (SAC) and to ensure accurate chromosome segregation. However, it is unknown whether Aurora B can phosphorylate inner kinetochore components to facilitate proper mitotic chromosome segregation. Here, we reported the structure of the fission yeast Schizosaccharomyces pombe Mis12-Nnf1 complex and showed that N-terminal residues 26-50 in Cnp3 (the CENP-C homolog of S. pombe) are responsible for interacting with the Mis12 complex. Interestingly, Thr28 of Cnp3 is a substrate of Ark1 (the Aurora B homolog of S. pombe), and phosphorylation impairs the interaction between the Cnp3 and Mis12 complex. The expression of a phosphorylation-mimicking Cnp3 mutant results in defective chromosome segregation due to improper kinetochore assembly. These results establish a previously uncharacterized regulatory mechanism involved in CENP-C-Mis12-facilitated kinetochore attachment error correction to ensure accurate chromosome segregation during mitosis.


Assuntos
Aurora Quinases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Cinetocoros/metabolismo , Mitose , Proteínas Nucleares/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Schizosaccharomyces pombe/metabolismo , Aurora Quinases/genética , Sítios de Ligação , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , Proteínas Nucleares/genética , Fosforilação , Ligação Proteica , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética
11.
Proc Natl Acad Sci U S A ; 114(37): E7717-E7726, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28847961

RESUMO

Two of the unsolved, important questions about epigenetics are: do histone arginine demethylases exist, and is the removal of histone tails by proteolysis a major epigenetic modification process? Here, we report that two orphan Jumonji C domain (JmjC)-containing proteins, JMJD5 and JMJD7, have divalent cation-dependent protease activities that preferentially cleave the tails of histones 2, 3, or 4 containing methylated arginines. After the initial specific cleavage, JMJD5 and JMJD7, acting as aminopeptidases, progressively digest the C-terminal products. JMJD5-deficient fibroblasts exhibit dramatically increased levels of methylated arginines and histones. Furthermore, depletion of JMJD7 in breast cancer cells greatly decreases cell proliferation. The protease activities of JMJD5 and JMJD7 represent a mechanism for removal of histone tails bearing methylated arginine residues and define a potential mechanism of transcription regulation.


Assuntos
Histona Desmetilases/metabolismo , Histonas/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Animais , Arginina/metabolismo , Proliferação de Células/fisiologia , Células Cultivadas , Epigênese Genética , Fibroblastos/metabolismo , Histonas/genética , Humanos , Metilação , Camundongos Knockout , Processamento de Proteína Pós-Traducional
12.
Anal Chem ; 91(10): 6616-6623, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-30907581

RESUMO

Desorption electrospray ionization (DESI) mass spectrometry imaging (MSI) can simultaneously record the 2D distribution of polar biomolecules in tissue slices at ambient conditions. However, sensitivity of DESI-MSI for nonpolar compounds is restricted by low ionization efficiency and strong ion suppression. In this study, a compact postphotoionization assembly combined with DESI (DESI/PI) was developed for imaging polar and nonpolar molecules in tissue sections by switching off/on a portable krypton lamp. Compared with DESI, higher signal intensities of nonpolar compounds could be detected with DESI/PI. To further increase the ionization efficiency and transport of charged ions of DESI/PI, the desorption solvent composition and gas flow in the ionization tube were optimized. In mouse brain tissue, more than 2 orders of magnitude higher signal intensities for certain neutral biomolecules like creatine, cholesterol, and GalCer lipids were obtained by DESI/PI in the positive ion mode, compared with that of DESI. In the negative ion mode, ion yields of DESI/PI for glutamine and some lipids (HexCer, PE, and PE-O) were also increased by several-fold. Moreover, nonpolar constituents in plant tissue, such as catechins in leaf shoots of tea, could also be visualized by DESI/PI. Our results indicate that DESI/PI can expand the application field of DESI to nonpolar molecules, which is important for comprehensive imaging of biomolecules in biological tissues with moderate spatial resolution at ambient conditions.


Assuntos
Química Encefálica , Compostos Fitoquímicos/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Animais , Encéfalo/diagnóstico por imagem , Limite de Detecção , Lipídeos/análise , Camundongos , Neurotransmissores/análise , Folhas de Planta/química , Espectrometria de Massas por Ionização por Electrospray/instrumentação , Chá/química
13.
Biochemistry ; 57(29): 4252-4262, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-29940104

RESUMO

Most reported bacterial phosphofructokinases (Pfks) are tetramers that exhibit activity allosterically regulated via conformational changes between the R and T states. We report that the Pfk from Staphylococcus aureus NCTC 8325 ( SaPfk) exists as both an active tetramer and an inactive dimer in solution. Multiple effectors, including pH, ADP, ATP, and adenylyl-imidodiphosphate (AMP-PNP), cause equilibrium shifts from the tetramer to dimer, whereas the substrate F6P stabilizes SaPfk tetrameric assembly. Crystal structures of SaPfk in complex with different ligands and biochemical analysis reveal that the flexibility of the Gly150-Leu151 motif in helix α7 plays a role in tetramer-dimer conversion. Thus, we propose a molecular mechanism for allosteric regulation of bacterial Pfk via conversion between the tetramer and dimer in addition to the well-characterized R-state/T-state mechanism.


Assuntos
Fosfofrutoquinase-1/química , Staphylococcus aureus/enzimologia , Regulação Alostérica , Cristalografia por Raios X , Humanos , Modelos Moleculares , Fosfofrutoquinase-1/metabolismo , Conformação Proteica , Multimerização Proteica , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/química , Staphylococcus aureus/metabolismo , Especificidade por Substrato
14.
Biochem Biophys Res Commun ; 503(3): 1207-1213, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30005877

RESUMO

RNase HII exists ubiquitously in organisms and functions as a monomer in prokaryotes. We determined the crystal structure of Staphylococcus aureus RNase HII (Sa-RNase HII), which displays a novel dimer conformation, with the active site of each monomer covered by the other one. Both small-angle X-ray scattering and gel-filtration analysis confirmed that Sa-RNase HII exists as a homodimer in solution. Enzymatic analysis revealed that the "self-inhibited" dimeric form is catalytically active. Furthermore, continuous-wave electron paramagnetic resonance experiments clarified that the Sa-RNase HII dimer undergoes a large conformational change upon substrate binding, but remains a dimer to catalyze the reaction. Our structural and biochemical studies identified a novel functional dimer of Sa-RNase HII with distinct regulation mechanism for its catalytic activity.


Assuntos
Ribonuclease H/química , Ribonuclease H/metabolismo , Staphylococcus aureus/enzimologia , Sequência de Aminoácidos , Cromatografia em Gel , Clonagem Molecular , Cristalografia por Raios X , Dimerização , Modelos Moleculares , Conformação Proteica , Ribonuclease H/genética , Alinhamento de Sequência
15.
Nat Chem Biol ; 12(4): 226-32, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26829474

RESUMO

Faithful segregation of chromosomes in mammalian cells requires bi-orientation of sister chromatids, which relies on the sensing of correct attachments between spindle microtubules and kinetochores. Although the mechanisms underlying cyclin-dependent kinase 1 (CDK1) activation, which triggers mitotic entry, have been extensively studied, the regulatory mechanisms that couple CDK1-cyclin B activity to chromosome stability are not well understood. Here, we identified a signaling axis in which Aurora B activity is modulated by CDK1-cyclin B via the acetyltransferase TIP60 in human cell division. CDK1-cyclin B phosphorylates Ser90 of TIP60, which elicits TIP60-dependent acetylation of Aurora B and promotes accurate chromosome segregation in mitosis. Mechanistically, TIP60 acetylation of Aurora B at Lys215 protects Aurora B's activation loop from dephosphorylation by the phosphatase PP2A to ensure a robust, error-free metaphase-anaphase transition. These findings delineate a conserved signaling cascade that integrates protein phosphorylation and acetylation with cell cycle progression for maintenance of genomic stability.


Assuntos
Aurora Quinase B/metabolismo , Segregação de Cromossomos/fisiologia , Histona Acetiltransferases/metabolismo , Cinetocoros/enzimologia , Mitose/fisiologia , Acetilação , Anticorpos Monoclonais/farmacologia , Aurora Quinase B/genética , Segregação de Cromossomos/genética , Inibidores Enzimáticos/farmacologia , Células HEK293 , Células HeLa , Histona Acetiltransferases/genética , Humanos , Imunoprecipitação , Cinetocoros/ultraestrutura , Lisina Acetiltransferase 5 , Mitose/genética , Plasmídeos , Imagem com Lapso de Tempo
16.
Biochem J ; 474(10): 1619-1631, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28258151

RESUMO

Complement factor H (CFH) is a soluble complement regulatory protein essential for the down-regulation of the alternative pathway on interaction with specific markers on the host cell surface. It recognizes the complement component 3b (C3b) and 3d (C3d) fragments in addition to self cell markers (i.e. glycosaminoglycans, sialic acid) to distinguish host cells that deserve protection from pathogens that should be eliminated. The Staphylococcus aureus surface protein serine-aspartate repeat protein E (SdrE) was previously reported to bind human CFH as an immune-evasion tactic. However, the molecular mechanism underlying SdrE-CFH-mediated immune evasion remains unknown. In the present study, we identified a novel region at CFH's C-terminus (CFH1206-1226), which binds SdrE N2 and N3 domains (SdrEN2N3) with high affinity, and determined the crystal structures of apo-SdrEN2N3 and the SdrEN2N3-CFH1206-1226 complex. Comparison of the structure of the CFH-SdrE complex with other CFH structures reveals that CFH's C-terminal tail flips from the main body to insert into the ligand-binding groove of SdrE. In addition, SdrEN2N3 adopts a 'close' state in the absence of CFH, which undergoes a large conformational change on CFH binding, suggesting a novel 'close, dock, lock and latch' (CDLL) mechanism for SdrE to recognize its ligand. Our findings imply that SdrE functions as a 'clamp' to capture CFH's C-terminal tail via a unique CDLL mechanism and sequesters CFH on the surface of S. aureus for complement evasion.


Assuntos
Proteínas de Bactérias/metabolismo , Modelos Moleculares , Staphylococcus aureus , Apoproteínas/química , Apoproteínas/genética , Apoproteínas/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Fator H do Complemento/química , Fator H do Complemento/genética , Fator H do Complemento/metabolismo , Cristalografia por Raios X , Humanos , Ligação de Hidrogênio , Evasão da Resposta Imune , Cinética , Ligantes , Mutação , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Desdobramento de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Staphylococcus aureus/imunologia
17.
Biochem Biophys Res Commun ; 494(3-4): 575-580, 2017 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-28951215

RESUMO

UHRF2 (Ubiquitin-like with PHD and ring finger domains 2) is an E3 ubiquitin ligase that plays important roles in DNA methylation, histone modifications and cell cycle regulation by interacting with multiple epigenetic or cell-cycle related proteins. Previous studied have identified PCNA (Proliferating cell nuclear antigen) as an interacting partner of UHRF2 by using the antibody microarray. However, the molecular mechanism and the function of UHRF2-PCNA interaction remains unclear. Here, we report the complex structure of PCNA and the peptide (784NEILQTLLDLFFPGYSK800) derived from UHRF2 that contains a PIP box. Structural analysis combined with mutagenesis experiments provide the molecular basis for the recognition of UHRF2 by PCNA via PIP-box.


Assuntos
Antígeno Nuclear de Célula em Proliferação/química , Antígeno Nuclear de Célula em Proliferação/ultraestrutura , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/ultraestrutura , Sítios de Ligação , Modelos Químicos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Antígeno Nuclear de Célula em Proliferação/genética , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Relação Estrutura-Atividade , Ubiquitina-Proteína Ligases/genética
18.
Biotechnol Lett ; 39(9): 1413-1423, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28653102

RESUMO

OBJECTIVES: To identify and characterize staphylococcus exotoxin-like (SET) protein Set11 from Staphylococcus aureus Mu50 strain and its possible targets proteins from human blood/serum. RESULTS: Set11 is a member of the staphylococcal superantigen-like (SSL) proteins (also called Staphylococcus exotoxin-like (SET) proteins) family that is found in staphylococcal strain Mu50. Its structure and function, however, remain unknown. We performed bioinformatics analysis of Set11: it had 90% sequence identity to SSL7 in NCTC 8325 strain, indicating Set11 is a SSL7 ortholog. SSL7 in ATCC 12598 strain binds complement C5 to inhibit complement system. To investigate if Set11 binds C5, we made the homology model of Set11 and the Set11-C5 complex model based on SSL7 and SSL7-C5 structures, respectively. Structural analysis and sequence alignment reveal that the residues in SSL7 involved in C5 binding are conserved in Set11, indicating C5 as the potential target for Set11. To identify new targets of Set11, we cloned, expressed and purified Set11 and performed CNBr-pull down combined mass spectrum assays using human blood and serum. CONCLUSIONS: We identified Set11 as the ortholog of SSL7 and determined C5, fibronectin 1 isoform 3 preproprotein, albumin, alpha-1-microglobulin precursor and complement C3 processor as the potential target proteins for Set11, indicating new functions of Set11/SSL7.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Complemento C5/metabolismo , Staphylococcus aureus/enzimologia , Staphylococcus aureus/genética , Superantígenos/genética , Superantígenos/metabolismo , Albuminas/metabolismo , alfa-Globulinas/metabolismo , Proteínas de Bactérias/química , Clonagem Molecular , Complemento C3/metabolismo , Biologia Computacional , Citocinas/metabolismo , Fibronectinas , Expressão Gênica , Humanos , Espectrometria de Massas , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Homologia de Sequência de Aminoácidos , Soro/química , Especificidade por Substrato , Superantígenos/química
19.
J Struct Biol ; 192(3): 478-486, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26481419

RESUMO

The Escherichia coli protein YmdB belongs to the macrodomain protein family, which can bind ADP-ribose (ADPr) and its derivatives. Recently, YmdB was reported to be capable of deacetylating O-acetyl-ADP-ribose (OAADPr) to yield ADPr and free acetate. To study the substrate specificity and catalytic mechanism, the crystal structures of E. coli YmdB in complex with ADPr, double mutant N25AD35A complexed with 2'-OAADPr, and Y126A/ADPr complex were solved at 1.8Å, 2.8Å and 3.0Å resolution, respectively. Structural and biochemical studies reveal that YmdB has substrate specificity against 2'-OAADPr. The conserved residues Asn25 and Asp35 are crucial for catalytic activity, and an active water molecule is proposed as the nucleophile to attack the acetyl group of 2'-OAADPr. Our findings indicate that the conserved phenyl group of Tyr126 plays a crucial role in catalytic activity by stabilizing the right orientation of distal ribose and that Gly32 may be important for activity by interacting with the acetyl group of 2'-OAADPr. Based on these observations, a model of YmdB in complex with 2'-OAADPr was made to illustrate the proposed catalytic mechanism of YmdB.


Assuntos
Proteínas de Transporte/fisiologia , Proteínas de Transporte/ultraestrutura , Proteínas de Escherichia coli/fisiologia , Proteínas de Escherichia coli/ultraestrutura , Escherichia coli/enzimologia , O-Acetil-ADP-Ribose/química , Adenosina Difosfato Ribose/química , Sequência de Aminoácidos , Proteínas de Transporte/genética , Catálise , Cristalografia por Raios X , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Hidrolases , Modelos Moleculares , Dados de Sequência Molecular , Mutação/genética , Ligação Proteica/fisiologia , Estrutura Terciária de Proteína , Especificidade por Substrato/fisiologia
20.
J Biol Chem ; 289(12): 8326-36, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24519934

RESUMO

The centromere is essential for precise and equal segregation of the parental genome into two daughter cells during mitosis. CENP-A is a unique histone H3 variant conserved in eukaryotic centromeres. The assembly of CENP-A to the centromere is mediated by Holliday junction recognition protein (HJURP) in early G1 phase. However, it remains elusive how HJURP governs CENP-A incorporation into the centromere. Here we show that human HJURP directly binds to Mis18ß, a component of the Mis18 complex conserved in the eukaryotic kingdom. A minimal region of HJURP for Mis18ß binding was mapped to residues 437-460. Depletion of Mis18ß by RNA interference dramatically impaired HJURP recruitment to the centromere, indicating the importance of Mis18ß in HJURP loading. Interestingly, phosphorylation of HJURP by CDK1 weakens its interaction with Mis18ß, consistent with the notion that assembly of CENP-A to the centromere is achieved after mitosis. Taken together, these data define a novel molecular mechanism underlying the temporal regulation of CENP-A incorporation into the centromere by accurate Mis18ß-HJURP interaction.


Assuntos
Centrômero/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , Mitose , Proteínas de Ciclo Celular , Linhagem Celular , Proteínas Cromossômicas não Histona/análise , Proteínas de Ligação a DNA/análise , Humanos , Fosforilação , Ligação Proteica , Mapas de Interação de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA