Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(29): e2117090119, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858306

RESUMO

Retinal photoreceptors have a distinct transcriptomic profile compared to other neuronal subtypes, likely reflecting their unique cellular morphology and function in the detection of light stimuli by way of the ciliary outer segment. We discovered a layer of this molecular specialization by revealing that the vertebrate retina expresses the largest number of tissue-enriched microexons of all tissue types. A subset of these microexons is included exclusively in photoreceptor transcripts, particularly in genes involved in cilia biogenesis and vesicle-mediated transport. This microexon program is regulated by Srrm3, a paralog of the neural microexon regulator Srrm4. Despite the fact that both proteins positively regulate retina microexons in vitro, only Srrm3 is highly expressed in mature photoreceptors. Its deletion in zebrafish results in widespread down-regulation of microexon inclusion from early developmental stages, followed by other transcriptomic alterations, severe photoreceptor defects, and blindness. These results shed light on the transcriptomic specialization and functionality of photoreceptors, uncovering unique cell type-specific roles for Srrm3 and microexons with implications for retinal diseases.


Assuntos
Proteínas , Segmento Externo das Células Fotorreceptoras da Retina , Fatores de Processamento de Serina-Arginina , Visão Ocular , Animais , Éxons , Deleção de Genes , Humanos , Proteínas/genética , Proteínas/fisiologia , Segmento Externo das Células Fotorreceptoras da Retina/metabolismo , Fatores de Processamento de Serina-Arginina/genética , Fatores de Processamento de Serina-Arginina/fisiologia , Transcriptoma , Visão Ocular/genética , Visão Ocular/fisiologia , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/genética
2.
Neurobiol Dis ; 197: 106536, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763444

RESUMO

CLN8 is an endoplasmic reticulum cargo receptor and a regulator of lysosome biogenesis whose loss of function leads to neuronal ceroid lipofuscinosis. CLN8 has been linked to autophagy and lipid metabolism, but much remains to be learned, and there are no therapies acting on the molecular signatures in this disorder. The present study aims to characterize the molecular pathways involved in CLN8 disease and, by pinpointing altered ones, to identify potential therapies. To bridge the gap between cell and mammalian models, we generated a new zebrafish model of CLN8 deficiency, which recapitulates the pathological features of the disease. We observed, for the first time, that CLN8 dysfunction impairs autophagy. Using autophagy modulators, we showed that trehalose and SG2 are able to attenuate the pathological phenotype in mutant larvae, confirming autophagy impairment as a secondary event in disease progression. Overall, our successful modeling of CLN8 defects in zebrafish highlights this novel in vivo model's strong potential as an instrument for exploring the role of CLN8 dysfunction in cellular pathways, with a view to identifying small molecules to treat this rare disease.


Assuntos
Autofagia , Modelos Animais de Doenças , Lipofuscinoses Ceroides Neuronais , Fenótipo , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Autofagia/fisiologia , Autofagia/efeitos dos fármacos , Lipofuscinoses Ceroides Neuronais/genética , Lipofuscinoses Ceroides Neuronais/patologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Animais Geneticamente Modificados , Trealose/farmacologia
3.
Mol Ther ; 29(8): 2441-2455, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-33895329

RESUMO

Mutations in USH2A are among the most common causes of syndromic and non-syndromic retinitis pigmentosa (RP). The two most recurrent mutations in USH2A, c.2299delG and c.2276G > T, both reside in exon 13. Skipping exon 13 from the USH2A transcript presents a potential treatment modality in which the resulting transcript is predicted to encode a slightly shortened usherin protein. Morpholino-induced skipping of ush2a exon 13 in zebrafish ush2armc1 mutants resulted in the production of usherinΔexon 13 protein and a completely restored retinal function. Antisense oligonucleotides were investigated for their potential to selectively induce human USH2A exon 13 skipping. Lead candidate QR-421a induced a concentration-dependent exon 13 skipping in induced pluripotent stem cell (iPSC)-derived photoreceptor precursors from an Usher syndrome patient homozygous for the c.2299delG mutation. Mouse surrogate mQR-421a reached the retinal outer nuclear layer after a single intravitreal injection and induced a detectable level of exon skipping until at least 6 months post-injection. In conclusion, QR-421a-induced exon skipping proves to be a highly promising treatment option for RP caused by mutations in USH2A exon 13.


Assuntos
Proteínas da Matriz Extracelular/metabolismo , Mutação , Oligonucleotídeos Antissenso/administração & dosagem , Retinose Pigmentar/tratamento farmacológico , Animais , Células Cultivadas , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Éxons , Proteínas da Matriz Extracelular/química , Proteínas da Matriz Extracelular/genética , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Modelos Moleculares , Oligonucleotídeos Antissenso/farmacologia , Retina/metabolismo , Retinose Pigmentar/genética , Retinose Pigmentar/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
4.
Pflugers Arch ; 473(9): 1569-1585, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33598728

RESUMO

All vertebrates share a canonical retina with light-sensitive photoreceptors in the outer retina. These photoreceptors are of two kinds: rods and cones, adapted to low and bright light conditions, respectively. They both show a peculiar morphology, with long outer segments, comprised of ordered stacks of disc-shaped membranes. These discs host numerous proteins, many of which contribute to the visual transduction cascade. This pathway converts the light stimulus into a biological signal, ultimately modulating synaptic transmission. Recently, the zebrafish (Danio rerio) has gained popularity for studying the function of vertebrate photoreceptors. In this review, we introduce this model system and its contribution to our understanding of photoreception with a focus on the cone visual transduction cascade.


Assuntos
Células Fotorreceptoras Retinianas Cones/química , Células Fotorreceptoras Retinianas Cones/fisiologia , Células Fotorreceptoras Retinianas Bastonetes/química , Células Fotorreceptoras Retinianas Bastonetes/fisiologia , Visão Ocular/fisiologia , Animais , Sinapses/química , Sinapses/fisiologia , Peixe-Zebra
5.
Exp Eye Res ; 173: 148-159, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29777677

RESUMO

Mutations in USH2A are the most frequent cause of Usher syndrome and autosomal recessive nonsyndromic retinitis pigmentosa. To unravel the pathogenic mechanisms underlying USH2A-associated retinal degeneration and to evaluate future therapeutic strategies that could potentially halt the progression of this devastating disorder, an animal model is needed. The available Ush2a knock-out mouse model does not mimic the human phenotype, because it presents with only a mild and late-onset retinal degeneration. Using CRISPR/Cas9-technology, we introduced protein-truncating germline lesions into the zebrafish ush2a gene (ush2armc1: c.2337_2342delinsAC; p.Cys780GlnfsTer32 and ush2ab1245: c.15520_15523delinsTG; p.Ala5174fsTer). Homozygous mutants were viable and displayed no obvious morphological or developmental defects. Immunohistochemical analyses with antibodies recognizing the N- or C-terminal region of the ush2a-encoded protein, usherin, demonstrated complete absence of usherin in photoreceptors of ush2armc1, but presence of the ectodomain of usherin at the periciliary membrane of ush2ab1245-derived photoreceptors. Furthermore, defects of usherin led to a reduction in localization of USH2 complex members, whirlin and Adgrv1, at the photoreceptor periciliary membrane of both mutants. Significantly elevated levels of apoptotic photoreceptors could be observed in both mutants when kept under constant bright illumination for three days. Electroretinogram (ERG) recordings revealed a significant and similar decrease in both a- and b-wave amplitudes in ush2armc1 as well as ush2ab1245 larvae as compared to strain- and age-matched wild-type larvae. In conclusion, this study shows that mutant ush2a zebrafish models present with early-onset retinal dysfunction that is exacerbated by light exposure. These models provide a better understanding of the pathophysiology underlying USH2A-associated RP and a unique opportunity to evaluate future therapeutic strategies.


Assuntos
Modelos Animais de Doenças , Proteínas da Matriz Extracelular/genética , Degeneração Retiniana/genética , Síndromes de Usher/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra , Animais , Apoptose , Eletrorretinografia , Proteínas da Matriz Extracelular/metabolismo , Regulação da Expressão Gênica/fisiologia , Técnicas de Inativação de Genes , Técnicas de Genotipagem , Proteínas de Membrana/metabolismo , Microscopia Imunoeletrônica , Mutação , Retina/fisiopatologia , Degeneração Retiniana/metabolismo , Degeneração Retiniana/fisiopatologia , Segmento Externo das Células Fotorreceptoras da Retina/metabolismo , Segmento Externo das Células Fotorreceptoras da Retina/ultraestrutura , Receptor do Retrovírus Politrópico e Xenotrópico , Proteínas de Peixe-Zebra/metabolismo
6.
FASEB J ; 30(12): 4275-4288, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27623930

RESUMO

The developmental role of the endocannabinoid system still remains to be fully understood. Here, we report the presence of a complete endocannabinoid system during zebrafish development and show that the genes that code for enzymes that catalyze the anabolism and catabolism (mgll and dagla) of the endocannabinoid, 2-AG (2-arachidonoylglycerol), as well as 2-AG main receptor in the brain, cannabinoid receptor type 1, are coexpressed in defined regions of axonal growth. By using morpholino-induced transient knockdown of the zebrafish Daglα homolog and its pharmacologic rescue, we suggest that synthesis of 2-AG is implicated in the control of axon formation in the midbrain-hindbrain region and that animals that lack Daglα display abnormal physiological behaviors in tests that measure stereotyped movement and motion perception. Our results suggest that the well-established role for 2-AG in axonal outgrowth has implications for the control of vision and movement in zebrafish and, thus, is likely common to all vertebrates.-Martella, A., Sepe, R. M., Silvestri, C., Zang, J., Fasano, G., Carnevali, O., De Girolamo, P., Neuhauss, S. C. F., Sordino, P., Di Marzo, V. Important role of endocannabinoid signaling in the development of functional vision and locomotion in zebrafish.


Assuntos
Axônios/metabolismo , Encéfalo/metabolismo , Endocanabinoides/metabolismo , Lipase Lipoproteica/metabolismo , Locomoção/fisiologia , Transdução de Sinais , Animais , Axônios/ultraestrutura , Comportamento Animal/fisiologia , Transdução de Sinais/fisiologia , Peixe-Zebra
7.
J Neurosci ; 35(28): 10188-201, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26180195

RESUMO

Usher syndrome type III (USH3) is characterized by progressive loss of hearing and vision, and varying degrees of vestibular dysfunction. It is caused by mutations that affect the human clarin-1 protein (hCLRN1), a member of the tetraspanin protein family. The missense mutation CLRN1(N48K), which affects a conserved N-glycosylation site in hCLRN1, is a common causative USH3 mutation among Ashkenazi Jews. The affected individuals hear at birth but lose that function over time. Here, we developed an animal model system using zebrafish transgenesis and gene targeting to provide an explanation for this phenotype. Immunolabeling demonstrated that Clrn1 localized to the hair cell bundles (hair bundles). The clrn1 mutants generated by zinc finger nucleases displayed aberrant hair bundle morphology with diminished function. Two transgenic zebrafish that express either hCLRN1 or hCLRN1(N48K) in hair cells were produced to examine the subcellular localization patterns of wild-type and mutant human proteins. hCLRN1 localized to the hair bundles similarly to zebrafish Clrn1; in contrast, hCLRN1(N48K) largely mislocalized to the cell body with a small amount reaching the hair bundle. We propose that this small amount of hCLRN1(N48K) in the hair bundle provides clarin-1-mediated function during the early stages of life; however, the presence of hCLRN1(N48K) in the hair bundle diminishes over time because of intracellular degradation of the mutant protein, leading to progressive loss of hair bundle integrity and hair cell function. These findings and genetic tools provide an understanding and path forward to identify therapies to mitigate hearing loss linked to the CLRN1 mutation. SIGNIFICANCE STATEMENT: Mutations in the clarin-1 gene affect eye and ear function in humans. Individuals with the CLRN1(N48K) mutation are born able to hear but lose that function over time. Here, we develop an animal model system using zebrafish transgenesis and gene targeting to provide an explanation for this phenotype. This approach illuminates the role of clarin-1 and the molecular mechanism linked to the CLRN1(N48K) mutation in sensory hair cells of the inner ear. Additionally, the investigation provided an in vivo model to guide future drug discovery to rescue the hCLRN1(N48K) in hair cells.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/genética , Células Ciliadas Auditivas/patologia , Proteínas de Membrana/metabolismo , Síndromes de Usher/patologia , Proteínas de Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Vias Auditivas/metabolismo , Vias Auditivas/patologia , Padronização Corporal/efeitos dos fármacos , Padronização Corporal/genética , Caderinas/genética , Modelos Animais de Doenças , Endodesoxirribonucleases/farmacologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Genótipo , Perda Auditiva/genética , Humanos , Larva , Masculino , Proteínas de Membrana/genética , Mutação/genética , Equilíbrio Postural/genética , Análise de Sequência de Proteína , Sinapses/metabolismo , Sinapses/patologia , Síndromes de Usher/complicações , Síndromes de Usher/genética , Transtornos da Visão/etiologia , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
8.
Hum Mol Genet ; 23(19): 5069-86, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24824219

RESUMO

Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is a leukodystrophy characterized by myelin vacuolization and caused by mutations in MLC1 or GLIALCAM. Patients with recessive mutations in either MLC1 or GLIALCAM show the same clinical phenotype. It has been shown that GLIALCAM is necessary for the correct targeting of MLC1 to the membrane at cell junctions, but its own localization was independent of MLC1 in vitro. However, recent studies in Mlc1(-/-) mice have shown that GlialCAM is mislocalized in glial cells. In order to investigate whether the relationship between Mlc1 and GlialCAM is species-specific, we first identified MLC-related genes in zebrafish and generated an mlc1(-/-) zebrafish. We have characterized mlc1(-/-) zebrafish both functionally and histologically and compared the phenotype with that of the Mlc1(-/-) mice. In mlc1(-/-) zebrafish, as in Mlc1(-/-) mice, Glialcam is mislocalized. Re-examination of a brain biopsy from an MLC patient indicates that GLIALCAM is also mislocalized in Bergmann glia in the cerebellum. In vitro, impaired localization of GlialCAM was observed in astrocyte cultures from Mlc1(-/-) mouse only in the presence of elevated potassium levels, which mimics neuronal activity. In summary, here we demonstrate an evolutionary conserved role for MLC1 in regulating glial surface levels of GLIALCAM, and this interrelationship explains why patients with mutations in either gene (MLC1 or GLIALCAM) share the same clinical phenotype.


Assuntos
Cistos/metabolismo , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/metabolismo , Proteínas de Membrana/metabolismo , Neuroglia/metabolismo , Proteínas/metabolismo , Animais , Animais Geneticamente Modificados , Astrócitos/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Proteínas de Ciclo Celular , Linhagem Celular , Membrana Celular/metabolismo , Cistos/genética , Modelos Animais de Doenças , Epêndima/citologia , Epêndima/metabolismo , Epêndima/ultraestrutura , Expressão Gênica , Genótipo , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Humanos , Junções Intercelulares/metabolismo , Junções Intercelulares/ultraestrutura , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Mutação , Fenótipo , Transporte Proteico , Proteínas/genética , Retina/metabolismo , Canais de Ânion Dependentes de Voltagem/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
9.
Bio Protoc ; 13(4): e4618, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36845534

RESUMO

The zebrafish retina is a canonical vertebrate retina. Since the past few years, with the continually growing genetic toolbox and imaging techniques, zebrafish plays a crucial role in retinal research. This protocol describes a method to quantitatively evaluate the expression of Arrestin3a (Arr3a) and G-protein receptor kinase7a (Grk7a) in the adult zebrafish retina at protein levels by infrared fluorescence western blot. Our protocol can be easily adapted to measure protein levels in additional zebrafish tissues.

10.
Methods Cell Biol ; 175: 97-128, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36967148

RESUMO

Vision is one of our dominant senses and its loss has a profound impact on the life quality of affected individuals. Highly specialized neurons in the retina called photoreceptors convert photons into neuronal responses. This conversion of photons is mediated by light sensitive opsin proteins, which are found in the outer segments of the photoreceptors. These outer segments are highly specialized primary cilia, explaining why retinal dystrophy is a key feature of ciliopathies, a group of diseases resulting from abnormal and dysfunctional cilia. Therefore, research on ciliopathies often includes the analysis of the retina with special focus on the photoreceptor and its outer segment. In the last decade, the zebrafish has emerged as an excellent model organism to study human diseases, in particular with respect to the retina. The cone-rich retina of zebrafish resembles the fovea of the human macula and thus represents an excellent model to study human retinal diseases. Here we give detailed guidance on how to analyze the morphological and ultra-structural integrity of photoreceptors in the zebrafish using various histological and imaging techniques. We further describe how to conduct functional analysis of the retina by electroretinography and how to prepare isolated outer segment fractions for different -omic approaches. These different methods allow a comprehensive analysis of photoreceptors, helping to enhance our understanding of the molecular and structural basis of ciliary function in health and of the consequences of its dysfunction in disease.


Assuntos
Ciliopatias , Peixe-Zebra , Animais , Humanos , Peixe-Zebra/metabolismo , Cílios/metabolismo , Retina , Proteínas de Peixe-Zebra/metabolismo , Ciliopatias/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo
11.
Elife ; 122023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37227126

RESUMO

Genetic studies in human and mice have established a dual role for Vsx genes in retina development: an early function in progenitors' specification, and a later requirement for bipolar-cells fate determination. Despite their conserved expression patterns, it is currently unclear to which extent Vsx functions are also conserved across vertebrates, as mutant models are available only in mammals. To gain insight into vsx function in teleosts, we have generated vsx1 and vsx2 CRISPR/Cas9 double knockouts (vsxKO) in zebrafish. Our electrophysiological and histological analyses indicate severe visual impairment and bipolar cells depletion in vsxKO larvae, with retinal precursors being rerouted toward photoreceptor or Müller glia fates. Surprisingly, neural retina is properly specified and maintained in mutant embryos, which do not display microphthalmia. We show that although important cis-regulatory remodelling occurs in vsxKO retinas during early specification, this has little impact at a transcriptomic level. Our observations point to genetic redundancy as an important mechanism sustaining the integrity of the retinal specification network, and to Vsx genes regulatory weight varying substantially among vertebrate species.


Assuntos
Proteínas de Homeodomínio , Peixe-Zebra , Animais , Humanos , Camundongos , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Homeodomínio/metabolismo , Retina/metabolismo , Genes Homeobox , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Mutação , Mamíferos/genética , Fatores de Transcrição/metabolismo , Proteínas do Olho/metabolismo
12.
Nat Commun ; 13(1): 1282, 2022 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-35277505

RESUMO

Primary cilia are key sensory organelles whose dysfunction leads to ciliopathy disorders such as Bardet-Biedl syndrome (BBS). Retinal degeneration is common in ciliopathies, since the outer segments (OSs) of photoreceptors are highly specialized primary cilia. BBS1, encoded by the most commonly mutated BBS-associated gene, is part of the BBSome protein complex. Using a bbs1 zebrafish mutant, we show that retinal development and photoreceptor differentiation are unaffected by Bbs1-loss, supported by an initially unaffected transcriptome. Quantitative proteomics and lipidomics on samples enriched for isolated OSs show that Bbs1 is required for BBSome-complex stability and that Bbs1-loss leads to accumulation of membrane-associated proteins in OSs, with enrichment in proteins involved in lipid homeostasis. Disruption of the tightly regulated OS lipid composition with increased OS cholesterol content are paralleled by early functional visual deficits, which precede progressive OS morphological anomalies. Our findings identify a role for Bbs1/BBSome in OS lipid homeostasis, suggesting a pathomechanism underlying retinal degeneration in BBS.


Assuntos
Síndrome de Bardet-Biedl , Animais , Síndrome de Bardet-Biedl/genética , Cílios/metabolismo , Lipídeos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Peixe-Zebra/metabolismo
13.
Diabetes Metab Res Rev ; 27(1): 28-34, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21218505

RESUMO

OBJECTIVE: the mechanism by which islet amyloid polypeptide (IAPP) inhibits insulin release is unclear. We hypothesized that reduced voltage-gated calcium channel activity and intracellular Ca(2+) concentration might contribute to IAPP-mediated inhibition of glucose-stimulated insulin release. RESEARCH DESIGN AND METHODS: rat islet beta cells were cultured and treated with various extracellular concentrations of IAPP, and insulin release was stimulated via addition of glucose. Activation voltage, high voltage-gated calcium channel currents, intracellular Ca(2+) concentration, and insulin secretion were detected by patch clamp electrophysiology, fluorescent digital imaging microscopy using calcium-sensitive fluorescent dye, and radioimmunoassay, respectively. RESULTS: high voltage-gated calcium channel currents, intracellular Ca(2+) concentration, and insulin secretion increased in a dose-dependent manner when rat beta cells were exposed to glucose. After short-term IAPP treatment (5 or 10 µM), these parameters decreased significantly in glucose-stimulated beta cells. However, no significant changes were observed with lower doses of IAPP. CONCLUSIONS: glucose-stimulated islet beta-cell high voltage-gated calcium channels were activated in conjunction with insulin secretion, while high extracellular concentrations of IAPP inhibited beta-cell high voltage-gated calcium channel activation and insulin secretion in a dose-dependent manner.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Glucose/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/farmacologia , Animais , Animais Recém-Nascidos , Depressores do Apetite/farmacologia , Células Cultivadas , Eletrofisiologia , Secreção de Insulina , Ratos , Ratos Wistar , Edulcorantes/farmacologia
14.
Elife ; 102021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34550876

RESUMO

Eukaryotes generally display a circadian rhythm as an adaption to the reoccurring day/night cycle. This is particularly true for visual physiology that is directly affected by changing light conditions. Here we investigate the influence of the circadian rhythm on the expression and function of visual transduction cascade regulators in diurnal zebrafish and nocturnal mice. We focused on regulators of shut-off kinetics such as Recoverins, Arrestins, Opsin kinases, and Regulator of G-protein signaling that have direct effects on temporal vision. Transcript as well as protein levels of most analyzed genes show a robust circadian rhythm-dependent regulation, which correlates with changes in photoresponse kinetics. Electroretinography demonstrates that photoresponse recovery in zebrafish is delayed in the evening and accelerated in the morning. Functional rhythmicity persists in continuous darkness, and it is reversed by an inverted light cycle and disrupted by constant light. This is in line with our finding that orthologous gene transcripts from diurnal zebrafish and nocturnal mice are often expressed in an anti-phasic daily rhythm.


Assuntos
Ritmo Circadiano/efeitos da radiação , Células Fotorreceptoras de Vertebrados/efeitos da radiação , Células Fotorreceptoras Retinianas Cones/efeitos da radiação , Animais , Arrestinas/genética , Arrestinas/metabolismo , Escuridão , Eletrorretinografia , Feminino , Receptor Quinase 1 Acoplada a Proteína G/genética , Receptor Quinase 1 Acoplada a Proteína G/metabolismo , Luz , Transdução de Sinal Luminoso , Masculino , Camundongos , Modelos Animais , Células Fotorreceptoras de Vertebrados/metabolismo , Proteínas RGS/genética , Proteínas RGS/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Visão Ocular/efeitos da radiação , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
15.
Invest Ophthalmol Vis Sci ; 61(2): 43, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-32106290

RESUMO

Purpose: Diabetic retinopathy (DR) is a leading cause of vision impairment and blindness worldwide in the working-age population, and the incidence is rising. Until now it has been difficult to define initiating events and disease progression at the molecular level, as available diabetic rodent models do not present the full spectrum of neural and vascular pathologies. Zebrafish harboring a homozygous mutation in the pancreatic transcription factor pdx1 were previously shown to display a diabetic phenotype from larval stages through adulthood. In this study, pdx1 mutants were examined for retinal vascular and neuronal pathology to demonstrate suitability of these fish for modeling DR. Methods: Vessel morphology was examined in pdx1 mutant and control fish expressing the fli1a:EGFP transgene. We further characterized vascular and retinal phenotypes in mutants and controls using immunohistochemistry, histology, and electron microscopy. Retinal function was assessed using electroretinography. Results: Pdx1 mutants exhibit clear vascular phenotypes at 2 months of age, and disease progression, including arterial vasculopenia, capillary tortuosity, and hypersprouting, could be detected at stages extending over more than 1 year. Neural-retinal pathologies are consistent with photoreceptor dysfunction and loss, but do not progress to blindness. Conclusions: This study highlights pdx1 mutant zebrafish as a valuable complement to rodent and other mammalian models of DR, in particular for research into the mechanistic interplay of diabetes with vascular and neuroretinal disease. They are furthermore suited for molecular studies to identify new targets for treatment of early as well as late DR.


Assuntos
Retinopatia Diabética/patologia , Células Fotorreceptoras/patologia , Degeneração Retiniana/patologia , Vasos Retinianos/patologia , Análise de Variância , Animais , Diabetes Mellitus Experimental , Retinopatia Diabética/fisiopatologia , Eletrorretinografia , Degeneração Retiniana/fisiopatologia , Vasos Retinianos/fisiopatologia , Peixe-Zebra
16.
Zhonghua Nei Ke Za Zhi ; 48(6): 488-91, 2009 Jun.
Artigo em Zh | MEDLINE | ID: mdl-19954046

RESUMO

OBJECTIVE: To observe the effect of amylin on the islet beta-cells voltage-gated L-calcium channels in rats. METHOD: Patch clamp technique was employed in the observation of the features and changes of electric current of islet beta-cells voltage-gated L-calcium channels before and after using amylin. RESULTS: In the glucose environment of 5.5 mmol/L, the electric current of rat islet beta-cells voltage-gated L-calcium channels was activated at -40 mV and reached the peak at about +20 mV, with a peak value of about -120 pA and the insulin secretion level was (0.76 +/- 0.12) microg/L. Under the stimulation of glucose of 16.7 mmol/L, the peak current voltage moved to the left and increased up to - 140 pA and the level of insulin secretion measured (1.78 +/- 0.13) microg/L. Hatch islet beta-cells in amylin at the concentrations of 0.5, 1.0, 5.0 and 10.0 micromol/L, respectively. It was observed that in the 0.5 micromol/L and 1.0 micromol/L groups, there was no remarkable change in the peak potential activation voltage, current, and insulin secretion volume in comparison with the control group. However, in the environment of 5.5 mmol/L glucose, the increase of activation voltage of the 5.0 and 10.0 micromol/L groups was - 30 mV, with the peak current reduced to approximately -80 pA and -60 pA and the insulin secretion decreased to (0.49 +/- 0.11) microg/L and (0.36 +/- 0.12) microg/L respectively. Under the concentration of 16.7 mmol/L glucose, the activation voltage increased from -40 mV up to -30 mV and the peak current reduced to -80 pA and -40 pA. In the meantime, the insulin secretion decreased respectively to (1.20 +/- 0.13) microg/L and (0.89 +/- 0.14) microg/L, which is of significance. CONCLUSION: The secretion of insulin is synchronized with the opening of the islet beta-cells voltage-gated L-calcium channels at the stimulation of glucose. The amylin inhibition of the insulin secretion is also synchronized with the opening of islet beta-cells voltage-gated L-calcium channels and it's in a positive concentration-dependent manner.


Assuntos
Amiloide/farmacologia , Canais de Cálcio Tipo L/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Animais , Células Cultivadas , Insulina/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Técnicas de Patch-Clamp , Ratos , Ratos Wistar
17.
Front Mol Neurosci ; 11: 473, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30618620

RESUMO

Recoverin (Rcv) is a low molecular-weight, neuronal calcium sensor (NCS) primarily located in photoreceptor outer segments of the vertebrate retina. Calcium ions (Ca2+)-bound Rcv has been proposed to inhibit G-protein-coupled receptor kinase (GRKs) in darkness. During the light response, the Ca2+-free Rcv releases GRK, which in turn phosphorylates visual pigment, ultimately leading to the cessation of the visual transduction cascade. Technological advances over the last decade have contributed significantly to a deeper understanding of Rcv function. These include both biophysical and biochemical approaches that will be discussed in this review article. Furthermore, electrophysiological experiments uncovered additional functions of Rcv, such as regulation of the lifetime of Phosphodiesterase-Transducin complex. Recently, attention has been drawn to different roles in rod and cone photoreceptors.This review article focuses on Rcv binding properties to Ca2+, disc membrane and GRK, and its physiological functions in phototransduction and signal transmission.

18.
Sci Rep ; 8(1): 12534, 2018 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-30120317

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

19.
Sci Rep ; 8(1): 2211, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29396404

RESUMO

Ciliopathies are human disorders caused by dysfunction of primary cilia, ubiquitous microtubule-based organelles involved in signal transduction. Cilia are anchored inside the cell through basal bodies (BBs), modified centrioles also acting as microtubule-organization centers. Photoreceptors (PRs) are sensory neurons, whose primary cilium forms a highly specialized compartment called the outer segment (OS) responsible for sensing incoming light. Thus, ciliopathies often present with retinal degeneration. Mutations in KIAA0586/TALPID3 (TA3) cause Joubert syndrome, in which 30% of affected individuals develop retinal involvement. To elucidate the function of TALPID3 in PRs, we studied talpid3 zebrafish mutants and identified a progressive retinal degeneration phenotype. The majority of PRs lack OS development due to defects in BB positioning and docking at the apical cell surface. Intracellular accumulation of the photopigment opsin leads to PR cell death of moderate severity. Electroretinograms demonstrate severe visual impairement. A small subset of PRs display normally docked BBs and extended OSs through rescue by maternally-deposited Talpid3. While localization of the small GTPase Rab8a, which plays an important role in BB docking, appears unaffected in talpid3-/- PRs, overexpression of constitutively active Rab8a rescues OS formation, indicating that the role of Ta3 in early ciliogenesis lies upstream of Rab8a activation in PRs.


Assuntos
Ciliopatias/patologia , GTP Fosfo-Hidrolases/metabolismo , Proteínas Mutantes/metabolismo , Biogênese de Organelas , Células Fotorreceptoras/patologia , Degeneração Retiniana/patologia , Proteínas de Peixe-Zebra/metabolismo , Animais , Sobrevivência Celular , Modelos Animais de Doenças , Eletrorretinografia , Proteínas Mutantes/genética , Opsinas/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
20.
Open Biol ; 5(8)2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26246494

RESUMO

The neuronal Ca(2+)-binding protein Recoverin has been shown to regulate phototransduction termination in mammalian rods. Here we identify four recoverin genes in the zebrafish genome, rcv1a, rcv1b, rcv2a and rcv2b, and investigate their role in modulating the cone phototransduction cascade. While Recoverin-1b is only found in the adult retina, the other Recoverins are expressed throughout development in all four cone types, except Recoverin-1a, which is expressed only in rods and UV cones. Applying a double flash electroretinogram (ERG) paradigm, downregulation of Recoverin-2a or 2b accelerates cone photoresponse recovery, albeit at different light intensities. Exclusive recording from UV cones via spectral ERG reveals that knockdown of Recoverin-1a alone has no effect, but Recoverin-1a/2a double-knockdowns showed an even shorter recovery time than Recoverin-2a-deficient larvae. We also showed that UV cone photoresponse kinetics depend on Recoverin-2a function via cone-specific kinase Grk7a. This is the first in vivo study demonstrating that cone opsin deactivation kinetics determine overall photoresponse shut off kinetics.


Assuntos
Recoverina/metabolismo , Células Fotorreceptoras Retinianas Cones/fisiologia , Animais , Quinases de Receptores Acoplados a Proteína G/metabolismo , Expressão Gênica , Técnicas de Silenciamento de Genes , Dados de Sequência Molecular , Especificidade de Órgãos/genética , Recoverina/deficiência , Recoverina/genética , Células Fotorreceptoras Retinianas Cones/efeitos da radiação , Raios Ultravioleta , Peixe-Zebra , Proteínas de Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA