Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proteins ; 91(8): 1032-1041, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36935548

RESUMO

RNA-binding proteins (RBPs) play significant roles in many biological life activities, many algorithms and tools are proposed to predict RBPs for researching biological mechanisms of RNA-protein binding sites. Deep learning algorithms based on traditional machine learning get better result for predicting RBPs. Recently, deep learning method fused with attention mechanism has attracted huge attention in many fields and gets competitive result. Thus, attention mechanism module may also improve model performance for predicting RNA-protein binding sites. In this study, we propose convolutional residual multi-head self-attention network (CRMSNet) that combines convolutional neural network (CNN), ResNet, and multi-head self-attention blocks to find RBPs for RNA sequence. First, CRMSNet incorporates convolutional neural networks, recurrent neural networks, and multi-head self-attention block. Second, CRMSNet can draw binding motif pictures from the convolutional layer parameters. Third, attention mechanism module combines the local and global RNA sequence information for capturing long sequence feature. CRMSNet gets competitive AUC (area under the receiver operating characteristic [ROC] curve) result in a large-scale dataset RBP-24. And CRMSNet experiment result is also compared with other state-of-the-art methods. The source code of our proposed CRMSNet method can be found in https://github.com/biomg/CRMSNet.


Assuntos
Aprendizado Profundo , Sequência de Bases , Redes Neurais de Computação , RNA/química , Proteínas de Ligação a RNA/química
2.
Artigo em Inglês | MEDLINE | ID: mdl-38451770

RESUMO

Genome-wide association studies have shown that common genetic variants associated with complex diseases are mostly located in non-coding regions, which may not be causal. In addition, the limited number of validated non-coding functional variants makes it difficult to develop an effective supervised learning model. Therefore, improving the accuracy of predicting non-coding causal variants has become critical. This study aims to build a transfer learning-based machine learning method for predicting regulatory variants to overcome the problem of limited sample size. This paper presents a supervised learning method transfer support vector machine (TSVM) for massively parallel reporter assays (MPRA) validated regulatory variants prediction. First, uses a convolutional neural network to extract features with transfer learning. Second, the extracted features are selected by random forest method. Third, the selected features are used to train support vector machine for classification. We performed scale sensitivity experiments on the MPRA dataset and validated the effectiveness of transfer learning. The model achieves the Mcc of 0.326 and the AUC of 0.720, which are higher than the state-of-the-art method.


Assuntos
Biologia Computacional , Máquina de Vetores de Suporte , Biologia Computacional/métodos , Humanos , Variação Genética/genética , Algoritmos , Estudo de Associação Genômica Ampla/métodos
3.
IEEE/ACM Trans Comput Biol Bioinform ; 20(5): 3322-3328, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37028092

RESUMO

RNA-binding proteins are important for the process of cell life activities. High-throughput technique experimental method to discover RNA-protein binding sites is time-consuming and expensive. Deep learning is an effective theory for predicting RNA-protein binding sites. Using weighted voting method to integrate multiple basic classifier models can improve model performance. Thus, in our study, we propose a weighted voting deep learning model (WVDL), which uses weighted voting method to combine convolutional neural network (CNN), long short term memory network (LSTM) and residual network (ResNet). First, the final forecast result of WVDL outperforms the basic classifier models and other ensemble strategies. Second, WVDL can extract more effective features by using weighted voting to find the best weighted combination. And, the CNN model also can draw the predicted motif pictures. Third, WVDL gets a competitive experiment result on public RBP-24 datasets comparing with other state-of-the-art methods. The source code of our proposed WVDL can be found in https://github.com/biomg/WVDL.


Assuntos
Aprendizado Profundo , RNA , Ligação Proteica , RNA/química , Sítios de Ligação , Proteínas de Ligação a RNA/química
4.
IEEE/ACM Trans Comput Biol Bioinform ; 20(2): 1180-1187, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35471886

RESUMO

Computational prediction of the RBP bound sites using features learned from existing annotation knowledge is an effective method because high-throughput experiments are complex, expensive and time-consuming. Many methods have been proposed to predict RNA-protein binding sites. However, the partial information of RNA sequence is not fully used. In this study, we propose multiple convolutional neural networks (MCNN) method, which predicts RNA-protein binding sites by integrating multiple convolutional neural networks constructed by RNA sequence information extracted from windows with different lengths. First, MCNN trains multiple CNNs base on RNA sequences extracted by different window lengths. Second, MCNN can extract more binding patterns of RBPs by combining these trained multiple CNNs previously. Third, MCNN only uses RNA base sequence information for RNA-protein binding sites prediction, which extracts sequence binding features and predicts the result with same architecture. This avoids the information loss of feature extraction step. Our proposed MCNN demonstrates a competitive performance comparing with other methods on a large-scale dataset derived from CLIP-seq, which is an effective method for RNA-protein binding sites prediction. The source code of our proposed MCNN method can be found in https://github.com/biomg/MCNN.


Assuntos
Proteínas de Ligação a RNA , RNA , Ligação Proteica/genética , RNA/química , Proteínas de Ligação a RNA/química , Sítios de Ligação , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA