Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Opt Express ; 24(10): 10205-12, 2016 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-27409846

RESUMO

Molybdenum disulfide and graphitic carbon nitride (MoS2-g-C3N4) nanocomposites with visible-light induced photocatalytic activity were successfully synthesized by a facile ultrasonic dispersion method. The crystalline structure and morphology of the MoS2-g-C3N4 nanocomposites were characterized by X-ray diffraction (XRD), transmission electron microcopy (TEM), high-resolution TEM (HRTEM) and scanning electron microscopy (SEM). The optical property of the as-prepared nanocomposites was studied by ultraviolet visible diffusion reflection (UV-vis) and photoluminescence(PL) spectrum. It could be observed from the TEM image that the MoS2 nanosheets and g-C3N4 nanoparticles were well combined together. Moreover, the photocatalytic activity of MoS2-g-C3N4 composites was evaluated by the removal of nitric oxide under visible light irradiation (>400nm). The experimental results demonstrated that the nanocomposites with the MoS2 content of 1.5 wt% exhibited optimal photocatalytic activity and the corresponding removal rate of NO achieved 51.67%, higher than that of pure g-C3N4 nanoparticles. A possible photocatalytic mechanism for the MoS2-g-C3N4 nanocomposites with enhanced photocatalytic activity could be ascribed to the hetero-structure of MoS2 and g-C3N4.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA