Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Mol Neurosci ; 17: 1304507, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38380114

RESUMO

The delicate "Excitatory/Inhibitory balance" between neurons holds significance in neurodegenerative and neurodevelopmental diseases. With the ultimate goal of creating a faithful in vitro model of the human brain, in this study, we investigated the critical factor of heterogeneity, focusing on the interplay between excitatory glutamatergic (E) and inhibitory GABAergic (I) neurons in neural networks. We used high-density Micro-Electrode Arrays (MEA) with 2304 recording electrodes to investigate two neuronal culture configurations: 100% glutamatergic (100E) and 75% glutamatergic / 25% GABAergic (75E25I) neurons. This allowed us to comprehensively characterize the spontaneous electrophysiological activity exhibited by mature cultures at 56 Days in vitro, a time point in which the GABA shift has already occurred. We explored the impact of heterogeneity also through electrical stimulation, revealing that the 100E configuration responded reliably, while the 75E25I required more parameter tuning for improved responses. Chemical stimulation with BIC showed an increase in terms of firing and bursting activity only in the 75E25I condition, while APV and CNQX induced significant alterations on both dynamics and functional connectivity. Our findings advance understanding of diverse neuron interactions and their role in network activity, offering insights for potential therapeutic interventions in neurological conditions. Overall, this work contributes to the development of a valuable human-based in vitro system for studying physiological and pathological conditions, emphasizing the pivotal role of neuron diversity in neural network dynamics.

2.
APL Bioeng ; 7(4): 046121, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38130601

RESUMO

In vitro models of neuronal networks have emerged as a potent instrument for gaining deeper insights into the intricate mechanisms governing the human brain. Notably, the integration of human-induced pluripotent stem cells (hiPSCs) with micro-electrode arrays offers a means to replicate and dissect both the structural and functional elements of the human brain within a controlled in vitro environment. Given that neuronal communication relies on the emission of electrical (and chemical) stimuli, the employment of electrical stimulation stands as a mean to comprehensively interrogate neuronal assemblies, to better understand their inherent electrophysiological dynamics. However, the establishment of standardized stimulation protocols for cultures derived from hiPSCs is still lacking, thereby hindering the precise delineation of efficacious parameters to elicit responses. To fill this gap, the primary objective of this study resides in delineating effective parameters for the electrical stimulation of hiPSCs-derived neuronal networks, encompassing the determination of voltage amplitude and stimulation frequency able to evoke reliable and stable responses. This study represents a stepping-stone in the exploration of efficacious stimulation parameters, thus broadening the electrophysiological activity profiling of neural networks sourced from human-induced pluripotent stem cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA