Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Med Genet A ; 194(5): e63532, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38192009

RESUMO

Alpha-mannosidosis is a rare autosomal recessive lysosomal storage disorder caused by biallelic mutations in the MAN2B1 gene and characterized by a wide clinical heterogeneity. Diagnosis for this multisystemic disorder is confirmed by the presence of either a deficiency in the lysosomal enzyme acid alpha-mannosidase or biallelic mutations in the MAN2B1 gene. This diagnosis confirmation is crucial for both clinical management and genetic counseling purposes. Here we describe a late diagnosis of alpha-mannosidosis in a patient presenting with syndromic intellectual disability, and a rare retinopathy, where reverse phenotyping played a pivotal role in interpreting the exome sequencing result. While a first missense variant was classified as a variant of uncertain significance, the phenotype-guided analysis helped us detect and interpret an in-trans apparent alu-element insertion, which appeared to be a copy number variant (CNV) not identified by the CNV caller. A biochemical analysis showing abnormal excretion of urinary mannosyloligosaccharide and an enzyme assay permitted the re-classification of the missense variant to likely pathogenic, establishing the diagnosis of alpha-mannosidosis. This work emphasizes the importance of reverse phenotyping in the context of exome sequencing.


Assuntos
alfa-Manosidose , Humanos , alfa-Manosidose/diagnóstico , alfa-Manosidose/genética , Variações do Número de Cópias de DNA/genética , alfa-Manosidase/genética , Mutação de Sentido Incorreto/genética , Fenótipo
2.
J Med Genet ; 58(8): 570-578, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-32817297

RESUMO

BACKGROUND: Inherited retinal disorders are a clinically and genetically heterogeneous group of conditions and a major cause of visual impairment. Common disease subtypes include vitelliform macular dystrophy (VMD) and retinitis pigmentosa (RP). Despite the identification of over 90 genes associated with RP, conventional genetic testing fails to detect a molecular diagnosis in about one third of patients with RP. METHODS: Exome sequencing was carried out for identifying the disease-causing gene in a family with autosomal dominant RP. Gene panel testing and exome sequencing were performed in 596 RP and VMD families to identified additional IMPG1 variants. In vivo analysis in the medaka fish system by knockdown assays was performed to screen IMPG1 possible pathogenic role. RESULTS: Exome sequencing of a family with RP revealed a splice variant in IMPG1. Subsequently, the same variant was identified in individuals from two families with either RP or VMD. A retrospective study of patients with RP or VMD revealed eight additional families with different missense or nonsense variants in IMPG1. In addition, the clinical diagnosis of the IMPG1 retinopathy-associated variant, originally described as benign concentric annular macular dystrophy, was also revised to RP with early macular involvement. Using morpholino-mediated ablation of Impg1 and its paralog Impg2 in medaka fish, we confirmed a phenotype consistent with that observed in the families, including a decreased length of rod and cone photoreceptor outer segments. CONCLUSION: This study discusses a previously unreported association between monoallelic or biallelic IMPG1 variants and RP. Notably, similar observations have been reported for IMPG2.


Assuntos
Proteínas da Matriz Extracelular , Proteínas do Olho , Genes Recessivos , Predisposição Genética para Doença , Mutação , Proteoglicanas , Retinose Pigmentar , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Exoma/genética , Sequenciamento do Exoma/métodos , Proteínas da Matriz Extracelular/genética , Proteínas do Olho/genética , Genes Recessivos/genética , Predisposição Genética para Doença/genética , Padrões de Herança/genética , Degeneração Macular/genética , Mutação/genética , Linhagem , Fenótipo , Proteoglicanas/genética , Retina/patologia , Retinose Pigmentar/genética , Estudos Retrospectivos
3.
Hum Mutat ; 42(4): 323-341, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33538369

RESUMO

Choroideremia is an X-linked inherited retinal disorder (IRD) characterized by the degeneration of retinal pigment epithelium, photoreceptors, choriocapillaris and choroid affecting males with variable phenotypes in female carriers. Unlike other IRD, characterized by a large clinical and genetic heterogeneity, choroideremia shows a specific phenotype with causative mutations in only one gene, CHM. Ongoing gene replacement trials raise further interests in this disorder. We describe here the clinical and genetic data from a French cohort of 45 families, 25 of which carry novel variants, in the context of 822 previously reported choroideremia families. Most of the variants represent loss-of-function mutations with eleven families having large (i.e. ≥6 kb) genomic deletions, 18 small insertions, deletions or insertion deletions, six showing nonsense variants, eight splice site variants and two missense variants likely to affect splicing. Similarly, 822 previously published families carry mostly loss-of-function variants. Recurrent variants are observed worldwide, some of which linked to a common ancestor, others arisen independently in specific CHM regions prone to mutations. Since all exons of CHM may harbor variants, Sanger sequencing combined with quantitative polymerase chain reaction or multiplex ligation-dependent probe amplification experiments are efficient to achieve the molecular diagnosis in patients with typical choroideremia features.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Coroideremia , Proteínas Adaptadoras de Transdução de Sinal/genética , Coroideremia/diagnóstico , Coroideremia/genética , Coroideremia/terapia , Éxons , Feminino , Heterozigoto , Humanos , Masculino , Mutação
4.
Retina ; 41(8): 1771-1779, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33315831

RESUMO

PURPOSE: RTN4IP1 biallelic mutations cause a recessive optic atrophy, sometimes associated to more severe neurological syndromes, but so far, no retinal phenotype has been reported in RTN4IP1 patients, justifying their reappraisal. METHODS: Seven patients from four families carrying biallelic RTN4IP1 variants were retrospectively reviewed, with emphasis on their age of onset, visual acuity, multimodal imaging including color and autofluorescence frames, spectral-domain optical coherence tomography with RNFL and macular analyses. RESULTS: Seven patients from four RTN4IP1 families developed in their first decade of life a bilateral recessive optic atrophy with severe central visual loss, and primary nystagmus developed in 5 of 7 patients. Six patients were legally blind. In a second stage, the seven individuals developed a rod-cone dystrophy, sparing the macular zone and the far periphery. This retinal damage was identified by 55° field fundus autofluorescence frames and also by spectral-domain optical coherence tomography scans of the temporal part of the macular zone in five of the seven patients. Full-field electroretinography measurements disclosed reduced b-wave amplitude of the rod responses in all patients but two. Family 4 with the p.R103H and c.601A > T (p.K201*) truncating mutation had further combined neurological signs with cerebellar ataxia, seizures, and intellectual disability. CONCLUSION: RTN4IP1 recessive optic atrophy is systematically associated to a rod-cone dystrophy, which suggests that both the retinal ganglion cells and the rods are affected as a result of a deficit in the mitochondrial respiratory chain. Thus, systematic widefield autofluorescence frames and temporal macular scans are recommended for the evaluation of patients with optic neuropathies.


Assuntos
Proteínas de Transporte/genética , Distrofias de Cones e Bastonetes/genética , DNA/genética , Proteínas Mitocondriais/genética , Mutação , Adolescente , Adulto , Proteínas de Transporte/metabolismo , Criança , Distrofias de Cones e Bastonetes/diagnóstico , Distrofias de Cones e Bastonetes/metabolismo , Análise Mutacional de DNA , Eletrorretinografia , Feminino , Angiofluoresceinografia/métodos , Fundo de Olho , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Mitocondriais/metabolismo , Linhagem , Fenótipo , Estudos Retrospectivos , Tomografia de Coerência Óptica/métodos , Acuidade Visual , Campos Visuais , Adulto Jovem
5.
Int J Mol Sci ; 22(24)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34948090

RESUMO

Usher syndrome is an autosomal recessive disorder characterized by congenital hearing loss combined with retinitis pigmentosa, and in some cases, vestibular areflexia. Three clinical subtypes are distinguished, and MYO7A and USH2A represent the two major causal genes involved in Usher type I, the most severe form, and type II, the most frequent form, respectively. Massively parallel sequencing was performed on a cohort of patients in the context of a molecular diagnosis to confirm clinical suspicion of Usher syndrome. We report here 231 pathogenic MYO7A and USH2A genotypes identified in 73 Usher type I and 158 Usher type II patients. Furthermore, we present the ACMG classification of the variants, which comprise all types. Among them, 68 have not been previously reported in the literature, including 12 missense and 16 splice variants. We also report a new deep intronic variant in USH2A. Despite the important number of molecular studies published on these two genes, we show that during the course of routine genetic diagnosis, undescribed variants continue to be identified at a high rate. This is particularly pertinent in the current era, where therapeutic strategies based on DNA or RNA technologies are being developed.


Assuntos
Proteínas da Matriz Extracelular/genética , Genótipo , Mutação de Sentido Incorreto , Miosina VIIa/genética , Sítios de Splice de RNA , Síndromes de Usher , Adulto , Feminino , França , Humanos , Masculino , Síndromes de Usher/classificação , Síndromes de Usher/genética
6.
Int J Mol Sci ; 22(12)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203883

RESUMO

Variants of the TTLL5 gene, which encodes tubulin tyrosine ligase-like family member five, are a rare cause of cone dystrophy (COD) or cone-rod dystrophy (CORD). To date, only a few TTLL5 patients have been clinically and genetically described. In this study, we report five patients harbouring biallelic variants of TTLL5. Four adult patients presented either COD or CORD with onset in the late teenage years. The youngest patient had a phenotype of early onset severe retinal dystrophy (EOSRD). Genetic analysis was performed by targeted next generation sequencing of gene panels and assessment of copy number variants (CNV). We identified eight variants, of which six were novel, including two large multiexon deletions in patients with COD or CORD, while the EOSRD patient harboured the novel homozygous p.(Trp640*) variant and three distinct USH2A variants, which might explain the observed rod involvement. Our study highlights the role of TTLL5 in COD/CORD and the importance of large deletions. These findings suggest that COD or CORD patients lacking variants in known genes may harbour CNVs to be discovered in TTLL5, previously undetected by classical sequencing methods. In addition, variable phenotypes in TTLL5-associated patients might be due to the presence of additional gene defects.


Assuntos
Proteínas de Transporte/genética , Distrofias de Cones e Bastonetes/genética , Oftalmopatias Hereditárias/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Mutação/genética , Distrofias Retinianas/genética , Adulto , Idoso , Criança , Pontos de Quebra do Cromossomo , Simulação por Computador , Distrofias de Cones e Bastonetes/fisiopatologia , Variações do Número de Cópias de DNA/genética , Eletrorretinografia , Oftalmopatias Hereditárias/fisiopatologia , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Distrofias Retinianas/fisiopatologia
7.
Int J Mol Sci ; 22(23)2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34884448

RESUMO

Pathogenic variants in CRB1 lead to diverse recessive retinal disorders from severe Leber congenital amaurosis to isolated macular dystrophy. Until recently, no clear phenotype-genotype correlation and no appropriate mouse models existed. Herein, we reappraise the phenotype-genotype correlation of 50 patients with regards to the recently identified CRB1 isoforms: a canonical long isoform A localized in Müller cells (12 exons) and a short isoform B predominant in photoreceptors (7 exons). Twenty-eight patients with early onset retinal dystrophy (EORD) consistently had a severe Müller impairment, with variable impact on the photoreceptors, regardless of isoform B expression. Among them, two patients expressing wild type isoform B carried one variant in exon 12, which specifically damaged intracellular protein interactions in Müller cells. Thirteen retinitis pigmentosa patients had mainly missense variants in laminin G-like domains and expressed at least 50% of isoform A. Eight patients with the c.498_506del variant had macular dystrophy. In one family homozygous for the c.1562C>T variant, the brother had EORD and the sister macular dystrophy. In contrast with the mouse model, these data highlight the key role of Müller cells in the severity of CRB1-related dystrophies in humans, which should be taken into consideration for future clinical trials.


Assuntos
Células Ependimogliais/patologia , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Degeneração Macular/patologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Distrofias Retinianas/patologia , Retinose Pigmentar/patologia , Adolescente , Idade de Início , Processamento Alternativo , Criança , Pré-Escolar , Células Ependimogliais/metabolismo , Proteínas do Olho/química , Feminino , Estudos de Associação Genética , Humanos , Lactente , Degeneração Macular/genética , Degeneração Macular/metabolismo , Masculino , Proteínas de Membrana/química , Modelos Moleculares , Mutação de Sentido Incorreto , Proteínas do Tecido Nervoso/química , Mutação Puntual , Distrofias Retinianas/genética , Distrofias Retinianas/metabolismo , Retinose Pigmentar/genética , Retinose Pigmentar/metabolismo , Estudos Retrospectivos , Deleção de Sequência , Adulto Jovem
8.
Hum Mutat ; 40(1): 31-35, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30341801

RESUMO

Choroideremia is a monogenic X-linked recessive chorioretinal disease linked to pathogenic variants in the CHM gene. These variants are commonly base-pair changes, frameshifts, or large deletions. However, a few rare or unusual events comprising large duplications, a retrotransposon insertion, a pseudo-exon activation, and two c-98 promoter substitutions have also been described. Following an exhaustive molecular diagnosis, we identified and characterized three novel atypical disease-causing variants in three unrelated male patients. One is a first-ever reported Alu insertion within CHM and the other two are nucleotide substitutions, c.-90C>G and c.-108A>G, affecting highly conserved promoter positions. RNA analysis combined with western blot and functional assays of patient cells established the pathogenicity of the Alu insertion and the c.-90C>G alteration. Furthermore, luciferase reporter assays suggested a CHM transcription defect associated with the c.-90C>G and c.-108A>G variants. These findings broaden our knowledge of the mutational spectrum and the transcriptional regulation of the CHM gene.


Assuntos
Coroideremia/genética , Predisposição Genética para Doença , Mutação/genética , Elementos Alu/genética , Sequência de Bases , Éxons/genética , Humanos , Regiões Promotoras Genéticas/genética
9.
Hum Mutat ; 40(6): 765-787, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30825406

RESUMO

Inherited retinal disorders (IRD) represent clinically and genetically heterogeneous diseases. To date, pathogenic variants have been identified in ~260 genes. Albeit that many genes are implicated in IRD, for 30-50% of the cases, the gene defect is unknown. These cases may be explained by novel gene defects, by overlooked structural variants, by variants in intronic, promoter or more distant regulatory regions, and represent synonymous variants of known genes contributing to the dysfunction of the respective proteins. Patients with one subgroup of IRD, namely incomplete congenital stationary night blindness (icCSNB), show a very specific phenotype. The major cause of this condition is the presence of a hemizygous pathogenic variant in CACNA1F. A comprehensive study applying direct Sanger sequencing of the gene-coding regions, exome and genome sequencing applied to a large cohort of patients with a clinical diagnosis of icCSNB revealed indeed that seven of the 189 CACNA1F-related cases have intronic and synonymous disease-causing variants leading to missplicing as validated by minigene approaches. These findings highlight that gene-locus sequencing may be a very efficient method in detecting disease-causing variants in clinically well-characterized patients with a diagnosis of IRD, like icCSNB.


Assuntos
Canais de Cálcio Tipo L/genética , Oftalmopatias Hereditárias/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Mutação , Miopia/genética , Cegueira Noturna/genética , Análise de Sequência de DNA/métodos , Predisposição Genética para Doença , Hemizigoto , Humanos , Íntrons , Masculino , Linhagem , Splicing de RNA , Mutação Silenciosa
10.
Hum Mol Genet ; 26(22): 4367-4374, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28973654

RESUMO

In this study, we report a novel duplication causing North Carolina macular dystrophy (NCMD) identified applying whole genome sequencing performed on eight affected members of two presumed unrelated families mapping to the MCDR1 locus. In our families, the NCMD phenotype was associated with a 98.4 kb tandem duplication encompassing the entire CCNC and PRDM13 genes and a common DNase 1 hypersensitivity site. To study the impact of PRDM13 or CCNC dysregulation, we used the Drosophila eye development as a model. Knock-down and overexpression of CycC and CG13296, Drosophila orthologues of CCNC and PRDM13, respectively, were induced separately during eye development. In flies, eye development was not affected, while knocking down either CycC or CG13296 mutant models. Overexpression of CycC also had no effect. Strikingly, overexpression of CG13296 in Drosophila leads to a severe loss of the imaginal eye-antennal disc. This study demonstrated for the first time in an animal model that overexpression of PRDM13 alone causes a severe abnormal retinal development. It is noteworthy that mutations associated with this autosomal dominant foveal developmental disorder are frequently duplications always including an entire copy of PRDM13, or variants in one DNase 1 hypersensitivity site at this locus.


Assuntos
Distrofias Hereditárias da Córnea/genética , Ciclina C/genética , Histona-Lisina N-Metiltransferase/genética , Adulto , Animais , Mapeamento Cromossômico , Cromossomos Humanos Par 6 , Distrofias Hereditárias da Córnea/metabolismo , Ciclina C/metabolismo , Drosophila melanogaster , Proteínas do Olho/genética , Feminino , Ligação Genética , Haplótipos , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Masculino , Domínios PR-SET , Linhagem , Sequenciamento Completo do Genoma
11.
Hum Mutat ; 39(7): 887-913, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29659094

RESUMO

MER tyrosine kinase (MERTK) encodes a surface receptor localized at the apical membrane of the retinal pigment epithelium. It plays a critical role in photoreceptor outer segment internalization prior to phagocytosis. Mutations in MERTK have been associated with severe autosomal recessive retinal dystrophies in the RCS rat and in humans. We present here a comprehensive review of all reported MERTK disease causing variants with the associated phenotype. In addition, we provide further data and insights of a large cohort of 1,195 inherited retinal dystrophies (IRD) index cases applying state-of-the-art genotyping techniques and summarize current knowledge. A total of 79 variants have now been identified underlying rod-cone dystrophy and cone-rod dystrophy including 11 novel variants reported here. The mutation spectrum in MERTK includes 33 missense, 12 nonsense, 12 splice defects, 12 small deletions, two small insertion-deletions, three small duplications, and two exonic and three gross deletions. Altogether, mutations in MERTK account for ∼2% of IRD cases with a severe retinal phenotype. These data are important for current and future therapeutic trials including gene replacement therapy or cell-based therapy.


Assuntos
Mutação/genética , Retina/metabolismo , Doenças Retinianas/genética , c-Mer Tirosina Quinase/genética , Animais , Predisposição Genética para Doença , Humanos , Polimorfismo de Nucleotídeo Único/genética , Ratos , Retina/patologia , Doenças Retinianas/patologia , Epitélio Pigmentado da Retina/patologia
12.
J Med Genet ; 54(5): 346-356, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28031252

RESUMO

BACKGROUND: Non-syndromic hereditary optic neuropathy (HON) has been ascribed to mutations in mitochondrial fusion/fission dynamics genes, nuclear and mitochondrial DNA-encoded respiratory enzyme genes or nuclear genes of poorly known mitochondrial function. However, the disease causing gene remains unknown in many families. The objective of the present study was to identify the molecular cause of non-syndromic LHON-like disease in siblings born to non-consanguineous parents of French origin. METHODS: We used a combination of genetic analysis (gene mapping and whole-exome sequencing) in a multiplex family of non-syndromic HON and of functional analyses in patient-derived cultured skin fibroblasts and the yeast Yarrowia lipolytica. RESULTS: We identified compound heterozygote NDUFS2 disease-causing mutations (p.Tyr53Cys; p.Tyr308Cys). Studies using patient-derived cultured skin fibroblasts revealed mildly decreased NDUFS2 and complex I abundance but apparently normal respiratory chain activity. In the yeast Y. lipolytica ortholog NUCM, the mutations resulted in absence of complex I and moderate reduction in nicotinamide adenine dinucleotide-ubiquinone oxidoreductase activity, respectively. CONCLUSIONS: Biallelism for NDUFS2 mutations causing severe complex I deficiency has been previously reported to cause Leigh syndrome with optic neuropathy. Our results are consistent with the view that compound heterozygosity for severe and hypomorphic NDUFS2 mutations can cause non-syndromic HON. This observation suggests a direct correlation between the severity of NDUFS2 mutations and that of the disease and further support that there exist a genetic overlap between non-syndromic and syndromic HON due to defective mitochondrial function.


Assuntos
Mutação/genética , NADH Desidrogenase/genética , Atrofia Óptica Hereditária de Leber/genética , Adulto , Sequência de Aminoácidos , Animais , Sequência de Bases , Estudos de Casos e Controles , Bovinos , Sequência Conservada/genética , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/genética , Feminino , Fibroblastos/metabolismo , Haplótipos/genética , Heterozigoto , Humanos , Masculino , Mitocôndrias/genética , Proteínas Mutantes/metabolismo , NADH Desidrogenase/química , Oftalmoscopia , Linhagem , Fenótipo , Tomografia de Coerência Óptica , Yarrowia/metabolismo
13.
Am J Hum Genet ; 92(1): 67-75, 2013 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-23246293

RESUMO

Congenital stationary night blindness (CSNB) is a clinically and genetically heterogeneous retinal disorder. Two forms can be distinguished clinically: complete CSNB (cCSNB) and incomplete CSNB. Individuals with cCSNB have visual impairment under low-light conditions and show a characteristic electroretinogram (ERG). The b-wave amplitude is severely reduced in the dark-adapted state of the ERG, representing abnormal function of ON bipolar cells. Furthermore, individuals with cCSNB can show other ocular features such as nystagmus, myopia, and strabismus and can have reduced visual acuity and abnormalities of the cone ERG waveform. The mode of inheritance of this form can be X-linked or autosomal recessive, and the dysfunction of four genes (NYX, GRM6, TRPM1, and GPR179) has been described so far. Whole-exome sequencing in one simplex cCSNB case lacking mutations in the known genes led to the identification of a missense mutation (c.983G>A [p.Cys328Tyr]) and a nonsense mutation (c.1318C>T [p.Arg440(∗)]) in LRIT3, encoding leucine-rich-repeat (LRR), immunoglobulin-like, and transmembrane-domain 3 (LRIT3). Subsequent Sanger sequencing of 89 individuals with CSNB identified another cCSNB case harboring a nonsense mutation (c.1151C>G [p.Ser384(∗)]) and a deletion predicted to lead to a premature stop codon (c.1538_1539del [p.Ser513Cysfs(∗)59]) in the same gene. Human LRIT3 antibody staining revealed in the outer plexiform layer of the human retina a punctate-labeling pattern resembling the dendritic tips of bipolar cells; similar patterns have been observed for other proteins implicated in cCSNB. The exact role of this LRR protein in cCSNB remains to be elucidated.


Assuntos
Oftalmopatias Hereditárias/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Proteínas de Membrana/genética , Miopia/genética , Cegueira Noturna/genética , Polimorfismo Genético , Exoma , Feminino , Humanos , Masculino , Proteínas de Membrana/análise , Pessoa de Meia-Idade , Mutação , Retina/química
14.
Am J Hum Genet ; 93(3): 571-8, 2013 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-23993198

RESUMO

Vitelliform macular dystrophies (VMD) are inherited retinal dystrophies characterized by yellow, round deposits visible upon fundus examination and encountered in individuals with juvenile Best macular dystrophy (BMD) or adult-onset vitelliform macular dystrophy (AVMD). Although many BMD and some AVMD cases harbor mutations in BEST1 or PRPH2, the underlying genetic cause remains unknown for many affected individuals. In a large family with autosomal-dominant VMD, gene mapping and whole-exome sequencing led to the identification of a c.713T>G (p.Leu238Arg) IMPG1 mutation, which was subsequently found in two other families with autosomal-dominant VMD and the same phenotype. IMPG1 encodes the SPACR protein, a component of the rod and cone photoreceptor extracellular matrix domains. Structural modeling indicates that the p.Leu238Arg substitution destabilizes the conserved SEA1 domain of SPACR. Screening of 144 probands who had various forms of macular dystrophy revealed three other IMPG1 mutations. Two individuals from one family affected by autosomal-recessive VMD were homozygous for the splice-site mutation c.807+1G>T, and two from another family were compound heterozygous for the mutations c.461T>C (p.Leu154Pro) and c.1519C>T (p.Arg507(∗)). Most cases had a normal or moderately decreased electrooculogram Arden ratio. We conclude that IMPG1 mutations cause both autosomal-dominant and -recessive forms of VMD, thus indicating that impairment of the interphotoreceptor matrix might be a general cause of VMD.


Assuntos
Proteínas da Matriz Extracelular/genética , Proteínas do Olho/genética , Predisposição Genética para Doença , Mutação/genética , Proteoglicanas/genética , Distrofia Macular Viteliforme/genética , Adulto , Sequência de Aminoácidos , Sequência de Bases , Cromossomos Humanos/genética , Proteínas da Matriz Extracelular/química , Proteínas do Olho/química , Feminino , Fundo de Olho , Humanos , Padrões de Herança/genética , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Linhagem , Fenótipo , Proteoglicanas/química , Adulto Jovem
15.
Ophthalmology ; 123(9): 1865-73, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27320518

RESUMO

PURPOSE: To assess the association of clinical and biological factors with extensive macular atrophy with pseudodrusen (EMAP) characterized by bilateral macular atrophy occurring in patients aged 50 to 60 years and a rapid progression to legal blindness within 5 to 10 years. DESIGN: A national matched case-control study. PARTICIPANTS: Participants were recruited in 10 French Departments of Ophthalmology and their associated clinical investigation centers. All 115 patients with EMAP had symptoms before the age of 55 years due to bilateral extensive macular atrophy with a larger vertical axis and diffuse pseudodrusen. Three controls without age-related macular degeneration (AMD) or retinal disease at fundus examination were matched for each patient with EMAP by gender, age, and geographic area (in total 415). METHODS: Subjects and controls underwent an eye examination including color, red-free autofluorescent fundus photographs and spectral-domain optical coherence tomography with macular analysis. The interviews collected demographic, lifestyle, family and personal medical history, medications, and biological data. Associations of risk factors were estimated using conditional logistic regression. MAIN OUTCOME MEASURES: Extensive macular atrophy with pseudodrusen status (cases vs. controls). RESULTS: Extensive macular atrophy with pseudodrusen most frequently affected women (70 women, 45 men). After multivariate adjustment, family history of glaucoma or AMD was strongly associated with EMAP (odds ratio [OR], 2.3, P = 0.008 and OR, 1.5, P = 0.01, respectively). No association was found with cardiac diseases or their risk factors. Mild and moderate kidney disease and higher neutrophil rate were associated with a reduced risk of EMAP (OR, 0.58, P = 0.04; OR, 0.34, P = 0.01; and OR, 0.59, P = 0.003, respectively). On the contrary, eosinophilia (OR, 1.6; P = 0.0002), lymphocytosis (OR, 1.84; P = 0.0002), increased erythrocyte sedimentation rate (OR, 6.5; P = 0.0005), decreased CH50 (P = 0.001), and high plasma C3 level (P = 0.023) were significantly associated with a higher risk of EMAP. CONCLUSIONS: This study documents an association between EMAP and family history of AMD and glaucoma, a clear female predominance, and a systemic inflammatory profile. The reduced CH50 and increased C3 plasma values could reflect a more severe complement pathway dysfunction than in AMD, leading to early pseudodrusen and rapid development of geographic atrophy. There is no association of EMAP with AMD cardiac diseases or cardiac risks, including cigarette smoking.


Assuntos
Atrofia Geográfica/epidemiologia , Degeneração Macular/epidemiologia , Drusas Retinianas/epidemiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Cegueira , Estudos de Casos e Controles , Neovascularização de Coroide/epidemiologia , Técnicas de Diagnóstico Oftalmológico , Progressão da Doença , Feminino , França/epidemiologia , Atrofia Geográfica/etiologia , Humanos , Degeneração Macular/etiologia , Masculino , Pessoa de Meia-Idade , Razão de Chances , Fotografação , Drusas Retinianas/etiologia , Fatores de Risco , Distribuição por Sexo , Tomografia de Coerência Óptica , Acuidade Visual
16.
Am J Hum Genet ; 90(2): 321-30, 2012 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-22325361

RESUMO

Congenital stationary night blindness (CSNB) is a heterogeneous retinal disorder characterized by visual impairment under low light conditions. This disorder is due to a signal transmission defect from rod photoreceptors to adjacent bipolar cells in the retina. Two forms can be distinguished clinically, complete CSNB (cCSNB) or incomplete CSNB; the two forms are distinguished on the basis of the affected signaling pathway. Mutations in NYX, GRM6, and TRPM1, expressed in the outer plexiform layer (OPL) lead to disruption of the ON-bipolar cell response and have been seen in patients with cCSNB. Whole-exome sequencing in cCSNB patients lacking mutations in the known genes led to the identification of a homozygous missense mutation (c.1807C>T [p.His603Tyr]) in one consanguineous autosomal-recessive cCSNB family and a homozygous frameshift mutation in GPR179 (c.278delC [p.Pro93Glnfs(∗)57]) in a simplex male cCSNB patient. Additional screening with Sanger sequencing of 40 patients identified three other cCSNB patients harboring additional allelic mutations in GPR179. Although, immunhistological studies revealed Gpr179 in the OPL in wild-type mouse retina, Gpr179 did not colocalize with specific ON-bipolar markers. Interestingly, Gpr179 was highly concentrated in horizontal cells and Müller cell endfeet. The involvement of these cells in cCSNB and the specific function of GPR179 remain to be elucidated.


Assuntos
Exoma , Mutação , Miopia/genética , Cegueira Noturna/genética , Receptores Acoplados a Proteínas G/genética , Alelos , Animais , Eletrorretinografia/métodos , Oftalmopatias Hereditárias , Feminino , Doenças Genéticas Ligadas ao Cromossomo X , Heterogeneidade Genética , Técnicas de Genotipagem/métodos , Heterozigoto , Homozigoto , Humanos , Masculino , Camundongos , Fenótipo , Polimorfismo de Nucleotídeo Único , Estrutura Terciária de Proteína , Proteoglicanas/genética , Receptores de Glutamato Metabotrópico/genética , Retina/anormalidades , Canais de Cátion TRPM/genética
17.
Am J Med Genet A ; 167A(10): 2366-74, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26061759

RESUMO

We report on clinical, genetic and metabolic investigations in a family with optic neuropathy, non-progressive cardiomyopathy and cognitive disability. Ophthalmic investigations (slit lamp examination, funduscopy, OCT scan of the optic nerve, ERG and VEP) disclosed mild or no decreased visual acuity, but pale optic disc, loss of temporal optic fibers and decreased VEPs. Mitochondrial DNA and exome sequencing revealed a novel homozygous mutation in the nuclear MTO1 gene and the homoplasmic m.593T>G mutation in the mitochondrial MT-TF gene. Muscle biopsy analyses revealed decreased oxygraphic Vmax values for complexes I+III+IV, and severely decreased activities of the respiratory chain complexes (RCC) I, III and IV, while muscle histopathology was normal. Fibroblast analysis revealed decreased complex I and IV activity and assembly, while cybrid analysis revealed a partial complex I deficiency with normal assembly of the RCC. Thus, in patients with a moderate clinical presentation due to MTO1 mutations, the presence of an optic atrophy should be considered. The association with the mitochondrial mutation m.593T>G could act synergistically to worsen the complex I deficiency and modulate the MTO1-related disease.


Assuntos
Cardiomiopatias/genética , Proteínas de Transporte/genética , Homozigoto , Deficiência Intelectual/genética , Mutação , Doenças do Nervo Óptico/genética , RNA de Transferência de Fenilalanina/genética , Adulto , Cardiomiopatias/complicações , Cardiomiopatias/diagnóstico , Cardiomiopatias/patologia , Análise Mutacional de DNA , Complexo I de Transporte de Elétrons/genética , Complexo II de Transporte de Elétrons/genética , Complexo III da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Feminino , Expressão Gênica , Humanos , Deficiência Intelectual/complicações , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/patologia , Masculino , Potencial da Membrana Mitocondrial/genética , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Disco Óptico/metabolismo , Disco Óptico/patologia , Doenças do Nervo Óptico/complicações , Doenças do Nervo Óptico/diagnóstico , Doenças do Nervo Óptico/patologia , Linhagem , Proteínas de Ligação a RNA , Acuidade Visual
18.
Ophthalmology ; 121(12): 2406-14, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25085631

RESUMO

PURPOSE: To assess the frequency of and to characterize the clinical spectrum and optical coherence tomography findings of vitelliform macular dystrophy linked to IMPG1 and IMPG2, 2 new causal genes expressed in the interphotoreceptor matrix. DESIGN: Retrospective epidemiologic, clinical, electrophysiologic, and molecular genetic study. PARTICIPANTS: The database of a national referral center specialized in genetic sensory diseases was screened for patients with a macular vitelliform dystrophy without identified mutation or small deletion or large rearrangement in BEST1 and PRPH2 genes. Forty-nine families were included. METHODS: Clinical, imaging, and electro-oculogram findings were reviewed. Mutation screening of IMPG1 and IMPG2 genes were performed systematically. MAIN OUTCOME MEASURES: Frequency, inheritance, and clinical pattern of vitelliform dystrophy associated with IMPG1 and IMPG2 mutations were characterized. RESULTS: IMPG1 was the causal gene in 3 families (IMPG1 1-3, 11 patients) and IMPG2 in a fourth family (2 patients). With an autosomal dominant transmission, families 1 and 2 had the c.713T→G (p.Leu238Arg) mutation in IMPG1 and family 4 had the c.3230G→T (p.Cys1077Phe) mutation in IMPG2. Patients with IMPG1 or IMPG2 mutations had a late onset and moderate visual impairment (mean visual acuity, 20/40; mean age of onset, 42 years), even in the sporadic case of family 3 with a presumed recessive transmission (age at onset, 38 years; mean visual acuity, 20/50). Drusen-like lesions adjacent to the vitelliform deposits were observed in 9 of 13 patients. The vitelliform material was above the retinal pigment epithelium (RPE) at any stage of the macular dystrophy, and this epithelium was well preserved and maintained its classical reflectivity on spectral-domain optical coherence tomography (SD-OCT). Electro-oculogram results were normal or borderline in 9 cases. CONCLUSIONS: IMPG1 and IMPG2 are new causal genes in 8% of families negative for BEST1 and PRPH2 mutations. These genes should be screened in adult-onset vitelliform dystrophy with (1) moderate visual impairment, (2) drusen-like lesions, (3) normal reflectivity of the RPE line on SD-OCT, and (4) vitelliform deposits located between ellipsoid and interdigitation lines on SD-OCT. These clinical characteristics are not observed in the classical forms of BEST1 or PRPH2 vitelliform dystrophies.


Assuntos
Proteínas da Matriz Extracelular/genética , Proteínas do Olho/genética , Predisposição Genética para Doença , Mutação , Proteoglicanas/genética , Distrofia Macular Viteliforme , Adulto , Idoso , Estudos de Casos e Controles , Eletroculografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Epitélio Pigmentado da Retina/patologia , Estudos Retrospectivos , Tomografia de Coerência Óptica , Acuidade Visual , Distrofia Macular Viteliforme/genética , Distrofia Macular Viteliforme/patologia , Distrofia Macular Viteliforme/fisiopatologia
19.
Ophthalmic Genet ; : 1-6, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38957071

RESUMO

BACKGROUND: This case report explores the relationship between genetics and phenotypic variability in autosomal dominant vitreoretinochoroidopathy (ADVIRC). The study focuses on a case presenting a novel mutation in the BEST1 gene and its phenotype in the case's relatives, shedding light on the structural and functional intricacies underlying this rare ophthalmologic disorder. CASE PRESENTATION: A 33-year-old female presented for consultation with a history of bilateral retinal damage accompanied by a complaint of decreased visual acuity, progressive visual field deficit, and night blindness over the past year. Ophthalmic examination revealed a distinctive phenotype, including fibrillar vitreous, pigmented cells, and atrophic hyperpigmented retina in the periphery which was suggestive of a diagnosis of ADVIRC. Genetic testing revealed a heterozygous c.1101-1 G>T variant in BEST1, a novel splice site mutation. Functional analysis confirmed its impact on pre-mRNA splicing, resulting in an in-frame deletion (p(Ser367_Asn579del)). Family investigation revealed varying degrees of ophthalmologic impairment in the patient's mother and half-sister, both carrying the same mutation. CONCLUSIONS: This case report provides the first clinical description of the c.1101-1 G>T mutation in the BEST1 gene associated with ADVIRC. The presence of intrafamilial variability, as evidenced by the differing clinical features observed in the index case and her half-sister, suggests the potential involvement of mechanisms influencing phenotype expression.Abbreviation: ADVIRC : autosomal dominant vitreoretinochoroidopathy; RNA : ribonucleic acid; RPE : retinal pigment epithelium.

20.
Res Sq ; 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38405922

RESUMO

Inherited retinal degenerations are blinding genetic disorders characterized by high genetic and phenotypic heterogeneity. The implementation of next-generation sequencing in routine diagnostics, together with advanced clinical phenotyping including multimodal retinal imaging, have contributed to the increase of reports describing novel genotype-phenotype associations and phenotypic expansions. In this study, we describe sixteen families with early-onset non-syndromic retinal degenerations in which affected probands carried rare bi-allelic variants in CFAP410, a ciliary gene previously associated with syndromic recessive Jeune syndrome. The most common retinal phenotypes were cone-rod and rod-cone dystrophies, but the clinical presentations were unified by their early onset as well as the severe impact on central visual function. Twelve variants were detected (three pathogenic, seven likely pathogenic, two of uncertain significance), eight of which were novel. One deep intronic change, c.373+91A>G, led to the creation of a cryptic splice acceptor site in intron four, followed by the inclusion of a 200- base pair pseudoexon and subsequent premature stop codon formation. To our knowledge this is the first likely pathogenic deep-intronic variant identified in this gene. Meta-analysis of all published and novel CFAP410 variants revealed no clear correlation between the severity of the CFAP410-associated phenotypes and the identified causal variants. This is supported by the fact that the frequently encountered missense variant p.(Arg73Pro), often found in syndromic cases, was also associated with non-syndromic retinal degeneration. This study expands the current knowledge of CFAP410-associated ciliopathy by enriching its mutational landscape and supports its association with non-syndromic retinal degeneration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA