Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Cancer ; 24(1): 147, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291372

RESUMO

BACKGROUND: Pediatric low-grade glioma (pLGG) is essentially a single pathway disease, with most tumors driven by genomic alterations affecting the mitogen-activated protein kinase/ERK (MAPK) pathway, predominantly KIAA1549::BRAF fusions and BRAF V600E mutations. This makes pLGG an ideal candidate for MAPK pathway-targeted treatments. The type I BRAF inhibitor, dabrafenib, in combination with the MEK inhibitor, trametinib, has been approved by the United States Food and Drug Administration for the systemic treatment of BRAF V600E-mutated pLGG. However, this combination is not approved for the treatment of patients with tumors harboring BRAF fusions as type I RAF inhibitors are ineffective in this setting and may paradoxically enhance tumor growth. The type II RAF inhibitor, tovorafenib (formerly DAY101, TAK-580, MLN2480), has shown promising activity and good tolerability in patients with BRAF-altered pLGG in the phase 2 FIREFLY-1 study, with an objective response rate (ORR) per Response Assessment in Neuro-Oncology high-grade glioma (RANO-HGG) criteria of 67%. Tumor response was independent of histologic subtype, BRAF alteration type (fusion vs. mutation), number of prior lines of therapy, and prior MAPK-pathway inhibitor use. METHODS: LOGGIC/FIREFLY-2 is a two-arm, randomized, open-label, multicenter, global, phase 3 trial to evaluate the efficacy, safety, and tolerability of tovorafenib monotherapy vs. current standard of care (SoC) chemotherapy in patients < 25 years of age with pLGG harboring an activating RAF alteration who require first-line systemic therapy. Patients are randomized 1:1 to either tovorafenib, administered once weekly at 420 mg/m2 (not to exceed 600 mg), or investigator's choice of prespecified SoC chemotherapy regimens. The primary objective is to compare ORR between the two treatment arms, as assessed by independent review per RANO-LGG criteria. Secondary objectives include comparisons of progression-free survival, duration of response, safety, neurologic function, and clinical benefit rate. DISCUSSION: The promising tovorafenib activity data, CNS-penetration properties, strong scientific rationale combined with the manageable tolerability and safety profile seen in patients with pLGG led to the SIOPe-BTG-LGG working group to nominate tovorafenib for comparison with SoC chemotherapy in this first-line phase 3 trial. The efficacy, safety, and functional response data generated from the trial may define a new SoC treatment for newly diagnosed pLGG. TRIAL REGISTRATION: ClinicalTrials.gov: NCT05566795. Registered on October 4, 2022.


Assuntos
Vaga-Lumes , Glioma , Animais , Criança , Humanos , Adulto Jovem , Vaga-Lumes/metabolismo , Proteínas Proto-Oncogênicas B-raf , Glioma/tratamento farmacológico , Glioma/genética , Glioma/metabolismo , Resultado do Tratamento , Mutação , Proteínas Quinases Ativadas por Mitógeno , Oximas , Piridonas , Pirimidinonas/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico
2.
Childs Nerv Syst ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38819670

RESUMO

Pediatric low-grade gliomas (PLGG) are commonly treated with a combination of surgery, radiotherapy, and chemotherapy. Recent trends prioritize reducing long-term morbidities, particularly in younger patients. While historically chemotherapy was reserved for cases progressing after radiotherapy, evolving recommendations now advocate for its early use, particularly in younger age groups. The carboplatin and vincristine (CV) combination stands as a standard systemic therapy for PLGG, varying in dosage and administration between North America and Europe. Clinical trials have shown promising response rates, albeit with varying toxicity profiles. Vinblastine has emerged as another effective regimen with minimal toxicity. TPCV, a regimen combining thioguanine, procarbazine, lomustine, and vincristine, was compared to CV in a Children's Oncology Group trial, showing comparable outcomes, but more toxicity. Vinorelbine, temozolomide, and metronomic chemotherapy have also been explored, with varied success rates and toxicity profiles. Around 40-50% of PLGG patients require subsequent chemotherapy lines. Studies have shown varied efficacy in subsequent lines, with NF1 patients generally exhibiting better outcomes. The identification of molecular drivers like BRAF mutations has led to targeted therapies' development, showing promise in specific molecular subgroups. Trials comparing targeted therapy to conventional chemotherapy aim to delineate optimal treatment strategies based on molecular profiles. The landscape of chemotherapy in PLGG is evolving, with a growing focus on molecular subtyping and targeted therapies. Understanding the role of chemotherapy in conjunction with novel treatments is crucial for optimizing outcomes in pediatric patients with low-grade gliomas.

3.
Sci Rep ; 14(1): 3118, 2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326438

RESUMO

In this study, we provide a comprehensive clinical and molecular biological characterization of radiation-induced gliomas (RIG), including a risk assessment for developing gliomas. A cohort of 12 patients who developed RIG 9.5 years (3-31 years) after previous cranial radiotherapy for brain tumors or T-cell acute lymphoblastic leukemia was established. The derived risk of RIG development based on our consecutive cohort of 371 irradiated patients was 1.6% at 10 years and 3.02% at 15 years. Patients with RIG glioma had a dismal prognosis with a median survival of 7.3 months. We described radiology features that might indicate the suspicion of RIG rather than the primary tumor recurrence. Typical molecular features identified by molecular biology examination included the absence of Histon3 mutation, methylation profile of pedHGG-RTK1 and the presence of recurrent PDGFRA amplification and CDKN2A/B deletion. Of the two long-term surviving patients, one had gliomatosis cerebri, and the other had pleomorphic xanthoastrocytoma with BRAF V600E mutation. In summary, our experience highlights the need for tissue diagnostics to allow detailed molecular biological characterization of the tumor, differentiation of the secondary tumor from the recurrence of the primary disease and potentially finding a therapeutic target.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Glioma , Humanos , Proteínas Proto-Oncogênicas B-raf/genética , Glioma/genética , Glioma/radioterapia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/radioterapia , Astrocitoma/patologia , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA