Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Eur J Clin Invest ; 54(7): e14208, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38622800

RESUMO

BACKGROUND: Cardiovascular diseases (CVD) impact a substantial portion of the global population and represent a significant threat to experiencing life-threatening outcomes, such as atherosclerosis, myocardial infarction, stroke and heart failure. Despite remarkable progress in pharmacology and medical interventions, CVD persists as a major public health concern, and now ranks as the primary global cause of death and the highest consumer of global budgets. Ongoing research endeavours persist in seeking novel therapeutic avenues and interventions to deepen our understanding of CVD, enhance prevention measures, and refine treatment strategies. METHODS: Nanotechnology applied to the development of new molecular probes with diagnostic and theranostic properties represents one of the greatest technological challenges in preclinical and clinical research. RESULTS: The application of nanotechnology in cardiovascular medicine holds great promise for advancing our understanding of CVDs and revolutionizing their diagnosis and treatment strategies, ultimately improving patient care and outcomes. In addition, the capacity of drug encapsulation in nanoparticles has significantly bolstered their biological safety, bioavailability and solubility. In combination with imaging technologies, molecular imaging has emerged as a pivotal therapeutic tool, offering insight into the molecular events underlying disease and facilitating targeted treatment approaches. CONCLUSION: Here, we present a comprehensive overview of the recent advancements in targeted nanoparticle approaches for diagnosing CVDs, encompassing molecular imaging techniques, underscoring the significant progress in theranostic, as a novel and promising therapeutic strategy.


Assuntos
Doenças Cardiovasculares , Humanos , Nanopartículas/uso terapêutico , Nanomedicina Teranóstica/métodos , Imagem Molecular , Nanotecnologia , Insuficiência Cardíaca/terapia , Infarto do Miocárdio , Acidente Vascular Cerebral , Aterosclerose
2.
Cells ; 13(6)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38534325

RESUMO

Calcific Aortic Valve Disease (CAVD) is a significant concern for cardiovascular health and is closely associated with chronic kidney disease (CKD). Aortic valve endothelial cells (VECs) play a significant role in the onset and progression of CAVD. Previous research has suggested that uremic toxins, particularly indoxyl sulfate (IS), induce vascular calcification and endothelial dysfunction, but the effect of IS on valve endothelial cells (VECs) and its contribution to CAVD is unclear. Our results show that IS reduced human VEC viability and increased pro-calcific markers RUNX2 and alkaline phosphatase (ALP) expression. Additionally, IS-exposed VECs cultured in pro-osteogenic media showed increased calcification. Mechanistically, IS induced endothelial-to-mesenchymal transition (EndMT), evidenced by the loss of endothelial markers and increased expression of mesenchymal markers. IS triggered VEC inflammation, as revealed by NF-kB activation, and decreased integrin-linked kinase (ILK) expression. ILK overexpression reversed the loss of endothelial phenotype and RUNX2, emphasizing its relevance in the pathogenesis of CAVD in CKD. Conversely, a lower dose of IS intensified some of the effects in EndMT caused by silencing ILK. These findings imply that IS affects valve endothelium directly, contributing to CAVD by inducing EndMT and calcification, with ILK acting as a crucial modulator.


Assuntos
Estenose da Valva Aórtica , Valva Aórtica/patologia , Calcinose , Proteínas Serina-Treonina Quinases , Insuficiência Renal Crônica , Calcificação Vascular , Humanos , Indicã , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Células Endoteliais/metabolismo , Células Cultivadas , Calcificação Vascular/metabolismo , Insuficiência Renal Crônica/patologia
3.
J Hypertens ; 42(4): 685-693, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38406874

RESUMO

BACKGROUND: Endothelial nitric oxide synthase (NOS3) elicits atheroprotection by preventing extracellular matrix (ECM) proteolytic degradation through inhibition of extracellular matrix metalloproteinase inducer (EMMPRIN) and collagenase MMP-13 by still unknown mechanisms. METHODS: C57BL/6 mice lacking ApoE , NOS3, and/or MMP13 were fed with a high-fat diet for 6 weeks. Entire aortas were extracted and frozen to analyze protein and nucleic acid expression. Atherosclerotic plaques were detected by ultrasound imaging, Oil Red O (ORO) staining, and Western Blot. RNA-seq and RT-qPCR were performed to evaluate EMMPRIN, MMP-9, and EMMPRIN-targeting miRNAs. Mouse aortic endothelial cells (MAEC) were incubated to assess the role of active MMP-13 over MMP-9. One-way ANOVA or Kruskal-Wallis tests were performed to determine statistical differences. RESULTS: Lack of NOS3 in ApoE null mice fed with a high-fat diet increased severe plaque accumulation, vessel wall widening, and high mortality, along with EMMPRIN-induced expression by upregulation of miRNAs 46a-5p and 486-5p. However, knocking out MMP-13 in ApoE/NOS3 -deficient mice was sufficient to prevent mortality (66.6 vs. 26.6%), plaque progression (23.1 vs. 8.8%), and MMP-9 expression, as confirmed in murine aortic endothelial cell (MAEC) cultures, in which MMP-9 was upregulated by incubation with active recombinant MMP-13, suggesting MMP-9 as a new target of MMP-13 in atherosclerosis. CONCLUSION: We describe a novel mechanism by which the absence of NOS3 may worsen atherosclerosis through EMMPRIN-induced ECM proteolytic degradation by targeting the expression of miRNAs 146a-5p and 485-5p. Focusing on NOS3 regulation of ECM degradation could be a promising approach in the management of atherosclerosis.


Assuntos
Aterosclerose , MicroRNAs , Animais , Camundongos , Metaloproteinase 13 da Matriz/metabolismo , Basigina/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Células Endoteliais/metabolismo , Camundongos Endogâmicos C57BL , Matriz Extracelular/metabolismo , MicroRNAs/metabolismo , Apolipoproteínas E/genética
4.
ESC Heart Fail ; 11(4): 2272-2286, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38638083

RESUMO

AIM: Severe functional tricuspid regurgitation (FTR) is associated with high risk of cardiovascular events, particularly heart failure (HF) and mortality. MicroRNAs (miRNAs) have been recently identified as novel biomarkers in different cardiovascular conditions, but no studies have focused on FTR. We sought to (1) to identify and validate circulating miRNAs as regulators of FTR and (2) to test association of miRNA with heart failure and mortality in FTR. METHODS AND RESULTS: Consecutive patients with isolated severe FTR (n = 100) evaluated in the outpatient Heart Valve Clinic and age- and gender-matched subjects with no TR (controls, n = 50) were prospectively recruited. The experimental design included (1) a screening phase to identify candidate miRNA differentially expressed in FTR (n = 8) compared with controls (n = 8) through miRNA array profiling of 192 miRNAs using quantitative reverse transcription PCR arrays [qRT-PCR]) and (2) a validation phase in which candidate miRNAs identified in the initial screening were selected for further validation by qRT-PCR in a prospectively recruited cohort of FTR (n = 92) and controls (n = 42). Bioinformatics analysis was used to predict their potential target genes and functional pathways elicited. A combined endpoint of hospital admission due to heart failure (HF) and all-cause mortality was defined. Initial screening identified 16 differentially expressed miRNAs in FTR compared with controls, subsequently confirmed in the validation phase (n = 16 were excluded due to significant haemolysis). miR-186-5p, miR-30e-5p, and miR-152-3p identified FTR with high predictive value [AUC of 0.93 (0.88-0.97), 0.83 (0.75-0.91) and 0.84 (0.76-0.92), respectively]. During a median follow-up of 20.4 months (IQR 8-35 months), 32% of FTR patients reached the combined endpoint. Patients with low relative expression of miR-15a-5p, miR-92a-3p, miR101-3p, and miR-363-3p, miR-324-3p, and miR-22-3p showed significantly higher rates of events (log-rank test for all P < 0.01). Both miR-15a-5p [hazard ratio: 0.21 (0.06-0.649, P = 0.007) and miR-92a-3p (0.27 (0.09-0.76), P = 0.01] were associated with outcomes after adjusting for age, gender, and New York Heart Association functional class. CONCLUSIONS: Circulating miRNAs are novel diagnostic and prognostic biomarkers in severe FTR. The quantification of miR-186-5p, miR-30e-5p, and miR-152-3p held strong diagnostic value, and the quantification of miR-15a-5p and miR-92a-3p are independently associated with outcomes. The recognition of specific miRNAs offers a novel perspective for TR evaluation.


Assuntos
Biomarcadores , MicroRNA Circulante , Insuficiência Cardíaca , Insuficiência da Valva Tricúspide , Humanos , Masculino , Feminino , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/sangue , Insuficiência Cardíaca/diagnóstico , Projetos Piloto , Insuficiência da Valva Tricúspide/genética , Insuficiência da Valva Tricúspide/epidemiologia , Estudos Prospectivos , MicroRNA Circulante/sangue , MicroRNA Circulante/genética , Biomarcadores/sangue , Pessoa de Meia-Idade , Idoso , Prognóstico , MicroRNAs/sangue , MicroRNAs/genética , Seguimentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA