Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Phylogenet Evol ; 192: 107986, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38142794

RESUMO

Chemoreception is critical for the survival and reproduction of animals. Except for a reduced group of insects and chelicerates, the molecular identity of chemosensory proteins is poorly understood in invertebrates. Gastropoda is the extant mollusk class with the greatest species richness, including marine, freshwater, and terrestrial lineages, and likely, highly diverse chemoreception systems. Here, we performed a comprehensive comparative genome analysis taking advantage of the chromosome-level information of two Gastropoda species, one of which belongs to a lineage that underwent a whole genome duplication event. We identified thousands of previously uncharacterized chemosensory-related genes, the majority of them encoding G protein-coupled receptors (GPCR), mostly organized into clusters distributed across all chromosomes. We also detected gene families encoding degenerin epithelial sodium channels (DEG-ENaC), ionotropic receptors (IR), sensory neuron membrane proteins (SNMP), Niemann-Pick type C2 (NPC2) proteins, and lipocalins, although with a lower number of members. Our phylogenetic analysis of the GPCR gene family across protostomes revealed: (i) remarkable gene family expansions in Gastropoda; (ii) clades including members from all protostomes; and (iii) species-specific clades with a substantial number of receptors. For the first time, we provide new and valuable knowledge into the evolution of the chemosensory gene families in invertebrates other than arthropods.


Assuntos
Artrópodes , Gastrópodes , Animais , Gastrópodes/genética , Filogenia , Artrópodes/genética , Genoma/genética , Genômica
2.
Mol Phylogenet Evol ; 186: 107838, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37286063

RESUMO

The Mediterranean cone snail, Lautoconus ventricosus, is currently considered a single species inhabiting the whole Mediterranean basin and the adjacent Atlantic coasts. Yet, no population genetic study has assessed its taxonomic status. Here, we collected 245 individuals from 75 localities throughout the Mediterranean Sea and used cox1 barcodes, complete mitochondrial genomes, and genome skims to test whether L. ventricosus represents a complex of cryptic species. The maximum likelihood phylogeny based on complete mitochondrial genomes recovered six main clades (hereby named blue, brown, green, orange, red, and violet) with sufficient sequence divergence to be considered putative species. On the other hand, phylogenomic analyses based on 437 nuclear genes only recovered four out of the six clades: blue and orange clades were thoroughly mixed and the brown one was not recovered. This mito-nuclear discordance revealed instances of incomplete lineage sorting and introgression, and may have caused important differences in the dating of main cladogenetic events. Species delimitation tests proposed the existence of at least three species: green, violet, and red + blue + orange (i.e., cyan). Green plus cyan (with sympatric distributions) and violet, had West and East Mediterranean distributions, respectively, mostly separated by the Siculo-Tunisian biogeographical barrier. Morphometric analyses of the shell using species hypotheses as factor and shell length as covariate showed that the discrimination power of the studied parameters was only 70.2%, reinforcing the cryptic nature of the uncovered species, and the importance of integrative taxonomic approaches considering morphology, ecology, biogeography, and mitochondrial and nuclear population genetic variation.


Assuntos
Genoma Mitocondrial , Mitocôndrias , Humanos , Animais , Filogenia , Mitocôndrias/genética , Especiação Genética , Caramujos/genética , DNA Mitocondrial/genética
3.
Mar Drugs ; 20(2)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35200678

RESUMO

The venom duct transcriptomes and proteomes of the cryptic cone snail species Virroconus ebraeus and Virroconus judaeus were obtained and compared. The most abundant and shared conotoxin precursor superfamilies in both species were M, O1, and O2. Additionally, three new putative conotoxin precursor superfamilies (Virro01-03) with cysteine pattern types VI/VII and XVI were identified. The most expressed conotoxin precursor superfamilies were SF-mi2 and M in V. ebraeus, and Cerm03 and M in V. judaeus. Up to 16 conotoxin precursor superfamilies and hormones were differentially expressed between both species, and clustered into two distinct sets, which could represent adaptations of each species to different diets. Finally, we predicted, with machine learning algorithms, the 3D structure model of selected venom proteins including the differentially expressed Cerm03 and SF-mi2, an insulin type 3, a Gastridium geographus GVIA-like conotoxin, and an ortholog to the Pionoconus magus ω-conotoxin MVIIA (Ziconotide).


Assuntos
Caramujo Conus , Venenos de Moluscos/química , Proteínas/química , Algoritmos , Animais , Aprendizado de Máquina , Proteínas/isolamento & purificação , Proteoma , Especificidade da Espécie , Transcriptoma
4.
J Mol Evol ; 89(3): 146-150, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33201312

RESUMO

In the early 1980s, DNA sequencing became a routine and the increasing computing power opened the door to reconstruct molecular phylogenies using probabilistic approaches. DNA sequence alignments provided a large number of positions containing phylogenetic information, which could be extracted using explicit statistical models that described the mutation process using appropriate parameters. Consequently, an active quest started for building increasingly improved (more realistic) statistical models of nucleotide substitution. The simplest model assumed that nucleotide frequencies were in equilibrium and one single category of substitutions. Subsequent models allowed either unequal nucleotide frequencies or separate rates for transitions and transversions. The HKY85 model (Hasegawa et al. in J Mol Evol 22:160, 1985) combined elegantly both options into a single model, which became one of the most useful ones and has been the choice in many molecular phylogenetic studies ever since. The use of improved substitution models such as HKY85 allows reconstructing more accurate and reliable phylogenies, which in turn provide robust frameworks for understanding how biological diversity evolved and for performing a wealth of comparative studies in different disciplines such as ecology, biogeography, developmental biology, biochemistry, genomics, epidemiology, and biomedicine.


Assuntos
Evolução Biológica , Modelos Genéticos , Sequência de Bases , Evolução Molecular , Filogenia , Alinhamento de Sequência
5.
Mol Phylogenet Evol ; 164: 107291, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34384903

RESUMO

Oceanic archipelagos are excellent systems for studying speciation, yet inference of evolutionary process requires that the colonization history of island organisms be known with accuracy. Here, we used phylogenomics and patterns of genetic diversity to infer the sequence and timing of colonization of Macaronesia by mainland common chaffinches (Fringilla coelebs), and assessed whether colonization of the different archipelagos has resulted in a species-level radiation. To reconstruct the evolutionary history of the complex we generated a molecular phylogeny based on genome-wide SNP loci obtained from genotyping-by-sequencing, we ran ancestral range biogeographic analyses, and assessed fine-scale genetic structure between and within archipelagos using admixture analysis. To test for a species-level radiation, we applied a probabilistic tree-based species delimitation method (mPTP) and an integrative taxonomy approach including phenotypic differences. Results revealed a circuitous colonization pathway in Macaronesia, from the mainland to the Azores, followed by Madeira, and finally the Canary Islands. The Azores showed surprisingly high genetic diversity, similar to that found on the mainland, and the other archipelagos showed the expected sequential loss of genetic diversity. Species delimitation methods supported the existence of several species within the complex. We conclude that the common chaffinch underwent a rapid radiation across Macaronesia that was driven by the sequential colonization of the different archipelagos, resulting in phenotypically and genetically distinct, independent evolutionary lineages. We recommend a taxonomic revision of the complex that takes into account its genetic and phenotypic diversity.


Assuntos
Evolução Biológica , Aves , Animais , Aves/genética , Genoma , Filogenia , Portugal
6.
BMC Evol Biol ; 20(1): 22, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-32024460

RESUMO

BACKGROUND: Polyplacophora, or chitons, have long fascinated malacologists for their distinct and rather conserved morphology and lifestyle compared to other mollusk classes. However, key aspects of their phylogeny and evolution remain unclear due to the few morphological, molecular, or combined phylogenetic analyses, particularly those addressing the relationships among the major chiton lineages. RESULTS: Here, we present a mitogenomic phylogeny of chitons based on 13 newly sequenced mitochondrial genomes along with eight available ones and RNAseq-derived mitochondrial sequences from four additional species. Reconstructed phylogenies largely agreed with the latest advances in chiton systematics and integrative taxonomy but we identified some conflicts that call for taxonomic revisions. Despite an overall conserved gene order in chiton mitogenomes, we described three new rearrangements that might have taxonomic utility and reconstructed the most likely scenario of gene order change in this group. Our phylogeny was time-calibrated using various fossils and relaxed molecular clocks, and the robustness of these analyses was assessed with several sensitivity analyses. The inferred ages largely agreed with previous molecular clock estimates and the fossil record, but we also noted that the ambiguities inherent to the chiton fossil record might confound molecular clock analyses. CONCLUSIONS: In light of the reconstructed time-calibrated framework, we discuss the evolution of key morphological features and call for a continued effort towards clarifying the phylogeny and evolution of chitons.


Assuntos
Genoma Mitocondrial , Poliplacóforos/classificação , Poliplacóforos/genética , Animais , DNA Mitocondrial/análise , DNA Mitocondrial/genética , Evolução Molecular , Fósseis , Ordem dos Genes , Genoma Mitocondrial/genética , Moluscos/classificação , Moluscos/genética , Filogenia , Análise de Sequência de DNA/métodos
7.
Proc Biol Sci ; 287(1929): 20200794, 2020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32546094

RESUMO

The transcriptomes of the venom glands of 13 closely related species of vermivorous cones endemic to West Africa from genera Africonus and Varioconus were sequenced and venom repertoires compared within a phylogenetic framework using one Kalloconus species as outgroup. The total number of conotoxin precursors per species varied between 108 and 221. Individuals of the same species shared about one-fourth of the total conotoxin precursors. The number of common sequences was drastically reduced in the pairwise comparisons between closely related species, and the phylogenetical signal was totally eroded at the inter-generic level (no sequence was identified as shared derived), due to the intrinsic high variability of these secreted peptides. A common set of four conotoxin precursor superfamilies (T, O1, O2 and M) was expanded in all studied cone species, and thus, they are considered the basic venom toolkit for hunting and defense in the West African vermivorous cone snails. Maximum-likelihood ancestral character reconstructions inferred shared conotoxin precursors preferentially at internal nodes close to the tips of the phylogeny (between individuals and between closely related species) as well as in the common ancestor of Varioconus. Besides the common toolkit, the two genera showed significantly distinct catalogues of conotoxin precursors in terms of type of superfamilies present and the abundance of members per superfamily, but had similar relative expression levels indicating functional convergence. Differential expression comparisons between vermivorous and piscivorous cones highlighted the importance of the A and S superfamilies for fish hunting and defense.


Assuntos
Conotoxinas/genética , Caramujo Conus , Peçonhas/genética , África Ocidental , Animais , Biologia Computacional , Transcriptoma
8.
Mol Phylogenet Evol ; 133: 12-23, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30572020

RESUMO

Long-branch attraction (LBA) is a well-known artifact in phylogenetic reconstruction. Sparse taxon sampling and extreme heterogeneity of evolutionary rates among lineages generate propitious situations for LBA, even defying probabilistic methods of phylogenetic inference. A clear example illustrating LBA challenges is the difficulty of reconstructing the deep gastropod phylogeny, particularly using mitochondrial (mt) genomes. Previous studies consistently obtained unorthodox phylogenetic relationships due to the LBA between the mitogenomes of patellogastropods (true limpets, represented only by Lottia digitalis), heterobranchs, and outgroup taxa. Here, we use the reconstruction of the gastropod mitogenomic phylogeny as a case exercise to test the effect of key methodological approaches proposed to counteract LBA, including the selection of slow-evolving representatives, the use of different outgroups, the application of site-heterogeneous evolutionary models, and the removal of fast-evolving sites. In this regard, we sequenced three new patellogastropod mt genomes, which displayed shorter branches than the one of Lottia as well as gene organizations more similar to that of the hypothetical gastropod ancestor. Phylogenetic analyses incorporating the mt genomes of Patella ferruginea, Patella vulgata, and Cellana radiata allowed eliminating the artificial clustering of Patellogastropoda and Heterobranchia that had prevailed in previous studies. Furthermore, the use of site-heterogeneous models with certain combinations of lineages within the outgroup allowed eliminating also the LBA between Heterobranchia and the outgroup, and recovering Apogastropoda (i.e., Caenogastropoda + Heterobranchia). Hence, for the first time, we were able to obtain a mitogenomic phylogeny of gastropods that is congruent with both morphological and nuclear datasets.


Assuntos
Gastrópodes/classificação , Genoma Mitocondrial , Filogenia , Animais , Artefatos , Evolução Biológica , Gastrópodes/genética
9.
Mar Drugs ; 17(10)2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31569823

RESUMO

The transcriptomes of the venom glands of two individuals of the magician's cone, Pionoconus magus, from Okinawa (Japan) were sequenced, assembled, and annotated. In addition, RNA-seq raw reads available at the SRA database from one additional specimen of P. magus from the Philippines were also assembled and annotated. The total numbers of identified conotoxin precursors and hormones per specimen were 118, 112, and 93. The three individuals shared only five identical sequences whereas the two specimens from Okinawa had 30 sequences in common. The total number of distinct conotoxin precursors and hormones for P. magus was 275, and were assigned to 53 conotoxin precursor and hormone superfamilies, two of which were new based on their divergent signal region. The superfamilies that had the highest number of precursors were M (42), O1 (34), T (27), A (18), O2 (17), and F (13), accounting for 55% of the total diversity. The D superfamily, previously thought to be exclusive of vermivorous cones was found in P. magus and contained a highly divergent mature region. Similarly, the A superfamily alpha 4/3 was found in P. magus despite the fact that it was previously postulated to be almost exclusive of the genus Rhombiconus. Differential expression analyses of P. magus compared to Chelyconus ermineus, the only fish-hunting cone from the Atlantic Ocean revealed that M and A2 superfamilies appeared to be more expressed in the former whereas the O2 superfamily was more expressed in the latter.


Assuntos
Conotoxinas/genética , Caramujo Conus/genética , Transcriptoma , Animais , Oceano Atlântico , Caramujo Conus/química , Perfilação da Expressão Gênica , Japão , Anotação de Sequência Molecular , RNA-Seq
10.
Mol Phylogenet Evol ; 127: 898-906, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29959984

RESUMO

With more than 5,000 species, Conoidea is one of the most diversified superfamilies of Gastropoda. Recently, the family-level classification of these venomous predator snails has undergone substantial changes, on the basis of a phylogenetic tree reconstructed combining partial mitochondrial and nuclear gene sequences, and up to 16 families are now recognized. However, phylogenetic relationships among these families remain largely unresolved. Here, we sequenced 20 complete or nearly complete mitochondrial (mt) genomes, which were combined with mt genomes available in GenBank to construct a dataset that included representatives of 80% of the known families, although for some we had only one species or genus as representative. Most of the sequenced conoidean mt genomes shared a constant genome organization, and observed rearrangements were limited exclusively to tRNA genes in a few lineages. Phylogenetic trees were reconstructed using probabilistic methods. Two main monophyletic groups, termed "Clade A" and "Clade B", were recovered with strong support within a monophyletic Conoidea. Clade A (including families Clavatulidae, Horaiclavidae, Turridae s.s., Terebridae, Drilliidae, Pseudomelatomidae, and Cochlespiridae) was composed of four main lineages, one of which was additionally supported by a rearrangement in the gene order. Clade B (including families Conidae, Borsoniidae, Clathurellidae, Mangeliidae, Raphitomidae, and Mitromorphidae) was composed of five main lineages. The reconstructed phylogeny rejected the monophyly of Clavatulidae, Horaiclavidae, Turridae, Pseudomelatomidae, and Conidae, indicating that several of the currently accepted families may be ill-defined. The reconstructed tree also revealed new phylogenetic positions for genera characterized as tentative (Gemmuloborsonia, Lucerapex, and Leucosyrinx), enigmatic (Marshallena) or challenging to place (Fusiturris), which will potentially impact the classification of the Conoidea.


Assuntos
Genoma Mitocondrial , Filogenia , Caramujos/genética , Animais , Sequência de Bases , Ordem dos Genes , Mitocôndrias/genética , Fases de Leitura Aberta/genética
11.
BMC Evol Biol ; 17(1): 231, 2017 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-29178825

RESUMO

BACKGROUND: Due to their great species and ecological diversity as well as their capacity to produce hundreds of different toxins, cone snails are of interest to evolutionary biologists, pharmacologists and amateur naturalists alike. Taxonomic identification of cone snails still relies mostly on the shape, color, and banding patterns of the shell. However, these phenotypic traits are prone to homoplasy. Therefore, the consistent use of genetic data for species delimitation and phylogenetic inference in this apparently hyperdiverse group is largely wanting. Here, we reconstruct the phylogeny of the cones endemic to Cabo Verde archipelago, a well-known radiation of the group, using mitochondrial (mt) genomes. RESULTS: The reconstructed phylogeny grouped the analyzed species into two main clades, one including Kalloconus from West Africa sister to Trovaoconus from Cabo Verde and the other with a paraphyletic Lautoconus due to the sister group relationship of Africonus from Cabo Verde and Lautoconus ventricosus from Mediterranean Sea and neighboring Atlantic Ocean to the exclusion of Lautoconus endemic to Senegal (plus Lautoconus guanche from Mauritania, Morocco, and Canary Islands). Within Trovaoconus, up to three main lineages could be distinguished. The clade of Africonus included four main lineages (named I to IV), each further subdivided into two monophyletic groups. The reconstructed phylogeny allowed inferring the evolution of the radula in the studied lineages as well as biogeographic patterns. The number of cone species endemic to Cabo Verde was revised under the light of sequence divergence data and the inferred phylogenetic relationships. CONCLUSIONS: The sequence divergence between continental members of the genus Kalloconus and island endemics ascribed to the genus Trovaoconus is low, prompting for synonymization of the latter. The genus Lautoconus is paraphyletic. Lautoconus ventricosus is the closest living sister group of genus Africonus. Diversification of Africonus was in allopatry due to the direct development nature of their larvae and mainly triggered by eustatic sea level changes during the Miocene-Pliocene. Our study confirms the diversity of cone endemic to Cabo Verde but significantly reduces the number of valid species. Applying a sequence divergence threshold, the number of valid species within the sampled Africonus is reduced to half.


Assuntos
Genoma Mitocondrial , Filogenia , Caramujos/classificação , Caramujos/genética , Animais , Sequência de Bases , Cabo Verde , DNA Mitocondrial/genética , Variação Genética , Análise de Sequência de DNA , Especificidade da Espécie
12.
Mol Phylogenet Evol ; 107: 142-151, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27794464

RESUMO

Understanding how the extraordinary taxonomic and ecological diversity of cone snails (Caenogastropoda: Conidae) evolved requires a statistically robust phylogenetic framework, which thus far is not available. While recent molecular phylogenies have been able to distinguish several deep lineages within the family Conidae, including the genera Profundiconus, Californiconus, Conasprella, and Conus (and within this one, several subgenera), phylogenetic relationships among these genera remain elusive. Moreover, the possibility that additional deep lineages may exist within the family is open. Here, we reconstructed with probabilistic methods a molecular phylogeny of Conidae using the newly sequenced complete or nearly complete mitochondrial (mt) genomes of the following nine species that represent all main Conidae lineages and potentially new ones: Profundiconus teramachii, Californiconus californicus, Conasprella wakayamaensis, Lilliconus sagei, Pseudolilliconus traillii, Conus (Kalloconus) venulatus, Conus (Lautoconus) ventricosus, Conus (Lautoconus) hybridus, and Conus (Eugeniconus) nobilis. To test the monophyly of the family, we also sequenced the nearly complete mt genomes of the following three species representing closely related conoidean families: Benthomangelia sp. (Mangeliidae), Tomopleura sp. (Borsoniidae), and Glyphostoma sp. (Clathurellidae). All newly sequenced conoidean mt genomes shared a relatively constant gene order with rearrangements limited to tRNA genes. The reconstructed phylogeny recovered with high statistical support the monophyly of Conidae and phylogenetic relationships within the family. The genus Profundiconus was placed as sister to the remaining genera. Within these, a clade including Californiconus and Lilliconus+Pseudolilliconus was the sister group of Conasprella to the exclusion of Conus. The phylogeny included a new lineage whose relative phylogenetic position was unknown (Lilliconus) and uncovered thus far hidden diversity within the family (Pseudolilliconus). Moreover, reconstructed phylogenetic relationships allowed inferring that the peculiar diet of Californiconus based on worms, mollusks, crustaceans and fish is derived, and reinforce the hypothesis that the ancestor of Conidae was a worm hunter. A chronogram was reconstructed under an uncorrelated relaxed molecular clock, which dated the origin of the family shortly after the Cretaceous-Tertiary boundary (about 59million years ago) and the divergence among main lineages during the Paleocene and the Eocene (56-30million years ago).


Assuntos
Caramujo Conus/classificação , Caramujo Conus/genética , Genoma Mitocondrial , Filogenia , Animais , Sequência de Bases , DNA Mitocondrial/genética , Variação Genética , Mitocôndrias/genética , Análise de Sequência de DNA , Fatores de Tempo
13.
Mol Phylogenet Evol ; 112: 79-87, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28450228

RESUMO

Cone snails attain in Senegal one of their highest peaks of species diversity throughout the continental coast of Western Africa. A total of 15 endemic species have been described, all placed in the genus Lautoconus. While there is ample data regarding the morphology of the shell and the radular tooth of these species, virtually nothing is known regarding the genetic diversity and phylogenetic relationships of one of the most endangered groups of cones. In this work, we determined the complete or near-complete (only lacking the control region) mitochondrial (mt) genomes of 17 specimens representing 11 endemic species (Lautoconus belairensis, Lautoconus bruguieresi, Lautoconus cacao, Lautoconus cloveri, Lautoconus cf. echinophilus, Lautoconus guinaicus, Lautoconus hybridus, Lautoconus senegalensis, Lautoconus mercator, Lautoconus taslei, and Lautoconus unifasciatus). We also sequenced the complete mt genome of Lautoconus guanche from the Canary Islands, which has been related to the cones endemic to Senegal. All mt genomes share the same gene arrangement, which conforms to the consensus reported for Conidae, Neogastropoda and Caenogastropoda. Phylogenetic analyses using probabilistic methods recovered three major lineages, whose divergence coincided in time with sea level and ocean current changes as well as temperature fluctuations during the Messinian salinity crisis and the Plio-Pleistocene transition. Furthermore, the three lineages corresponded to distinct types of radular tooth (robust, small, and elongated), suggesting that dietary specialization could be an additional evolutionary driver in the diversification of the cones endemic to Senegal. The reconstructed phylogeny showed several cases of phenotypic convergence (cryptic species) and questions the validity of some species (ecotypes or phenotypic plasticity), both results having important taxonomic and conservation consequences.


Assuntos
Genoma Mitocondrial , Caramujos/classificação , Caramujos/genética , África Ocidental , Animais , Sequência de Bases , Variação Genética , Filogenia , Senegal , Espanha
14.
Mol Phylogenet Evol ; 107: 64-79, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27746316

RESUMO

The subfamily Cantharidinae Gray, 1857 (Trochoidea: Trochidae) includes 23 recognized genera and over 200 known living species. These marine top shell snails are microphagous grazers that generally live in shallow rocky shores and in macroalgae and seagrass beds of sub-tropical and temperate waters from the Central and Western Indo-Pacific biogeographic regions to the Mediterranean Sea and the Eastern Atlantic Ocean. Recent molecular phylogenetic studies revising the family Trochidae supported the monophyly of the subfamily Cantharidinae and its sister group relationship to the subfamily Stomatellinae. These studies and others has thus far mostly focused on Indo-Pacific members of the subfamily Cantharidinae whereas here, we investigated phylogenetic relationships among their counterparts from the Mediterranean Sea and the North-eastern (NE) Atlantic Ocean including 33 species of genera Gibbula, Jujubinus, Phorcus, Clelandella, and Callumbonella. The Mediterranean and NE Atlantic taxa were supplemented with 30 Indo-Pacific Cantharidinae species plus 19 members of the sister group subfamily Stomatellinae. Phylogenetic trees were constructed using Bayesian inference and maximum likelihood with two datasets comprised of partial sequences of four or six mitochondrial (cox1, rrnL, rrnS, and cob) and nuclear (28S rRNA and histone H3) genes. A clade comprised of all Mediterranean and NE Atlantic taxa was recovered with high support, but its sister group among the Indo-Pacific lineages could not be determined with confidence (although the assignment of "Trochus" kotschyi to Priotrochus could be rejected). Within the Mediterranean and NE Atlantic clade, genera Phorcus and Jujubinus were recovered as reciprocally monophyletic, and the deep-sea genera Clelandella and Callumbonella were placed with high support as sister to Jujubinus. However, the genus Gibbula as currently defined was not monophyletic and constituent species were divided into three major clades and two independent lineages. Phylogenetic relationships among Phorcus, Jujubinus (plus Clelandella and Callumbonella), and the different clades of Gibbula were not fully resolved but received higher support in the phylogenetic analyses based on six genes. A first approach to resolve phylogenetic relationships within Stomatellinae was conducted showing that the diversity of the subfamily is highly underestimated at present, and that Calliotrochus is possibly a member of this subfamily. A chronogram was reconstructed using an uncorrelated relaxed lognormal molecular clock and the origin of the Mediterranean and NE Atlantic clade was dated right after the Azolla phase in the Middle Eocene about 48 million years ago whereas diversification of major clades (genera) followed the eastern closure of the Tethys Ocean in the Middle Miocene about 14 million years ago.


Assuntos
Caramujos/classificação , Animais , Oceano Atlântico , Teorema de Bayes , DNA/química , DNA/isolamento & purificação , DNA/metabolismo , DNA Mitocondrial/classificação , DNA Mitocondrial/genética , Histonas/classificação , Histonas/genética , Mar Mediterrâneo , Filogenia , RNA Ribossômico 28S/classificação , RNA Ribossômico 28S/genética , Análise de Sequência de DNA , Caramujos/genética
15.
J Mol Evol ; 89(3): 192-193, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33443585
16.
Mol Phylogenet Evol ; 104: 21-31, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27456746

RESUMO

Despite the extraordinary morphological and ecological diversity of Neritimorpha, few studies have focused on the phylogenetic relationships of this lineage of gastropods, which includes four extant superfamilies: Neritopsoidea, Hydrocenoidea, Helicinoidea, and Neritoidea. Here, the nucleotide sequences of the complete mitochondrial genomes of Georissa bangueyensis (Hydrocenoidea), Neritina usnea (Neritoidea), and Pleuropoma jana (Helicinoidea) and the nearly complete mt genomes of Titiscania sp. (Neritopsoidea) and Theodoxus fluviatilis (Neritoidea) were determined. Phylogenetic reconstructions using probabilistic methods were based on mitochondrial (13 protein coding genes and two ribosomal rRNA genes), nuclear (partial 28S rRNA, 18S rRNA, actin, and histone H3 genes) and combined sequence data sets. All phylogenetic analyses except one converged on a single, highly supported tree in which Neritopsoidea was recovered as the sister group of a clade including Helicinoidea as the sister group of Hydrocenoidea and Neritoidea. This topology agrees with the fossil record and supports at least three independent invasions of land by neritimorph snails. The mitochondrial genomes of Titiscania sp., G. bangueyensis, N. usnea, and T. fluviatilis share the same gene organization previously described for Nerita mt genomes whereas that of P. jana has undergone major rearrangements. We sequenced about half of the mitochondrial genome of another species of Helicinoidea, Viana regina, and confirmed that this species shares the highly derived gene order of P. jana.


Assuntos
Gastrópodes/citologia , Animais , DNA/química , DNA/isolamento & purificação , DNA/metabolismo , DNA Mitocondrial/classificação , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Gastrópodes/genética , Genoma Mitocondrial , Histonas/classificação , Histonas/genética , Histonas/metabolismo , Filogenia , RNA Ribossômico 18S/classificação , RNA Ribossômico 18S/genética , RNA Ribossômico 18S/metabolismo , RNA Ribossômico 28S/classificação , RNA Ribossômico 28S/genética , RNA Ribossômico 28S/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA
17.
Biochim Biophys Acta ; 1840(5): 1468-81, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24355433

RESUMO

BACKGROUND: Membrane intrinsic proteins (MIPs) are the proteins in charge of regulating water transport into cells. Because of this essential function, the MIP family is ancient, widespread, and highly diverse. SCOPE OF REVIEW: The rapidly accumulating genomic and transcriptomic data from previously poorly known groups such as unicellular eukaryotes, fungi, green algae, mosses, and non-vertebrate animals are contributing to expand our view of MIP evolution throughout the diversity of life. Here, by analyzing more than 1700 sequences, we provide an updated and comprehensive phylogeny of MIPs MAJOR CONCLUSIONS: The reconstructed phylogeny supports (i) deep orthology of X intrinsic proteins (XIPs; present from unicellular eukaryotes to plants); (ii) that the origin of small intrinsic proteins (SIPs) traces back to the common ancestor of all plants; and (iii) the expansion of aquaglyceroporins (GLPs) in Oomycetes, as well as their loss in vascular plants and in the ancestor of endopterygote insects. Additionally, conserved positions in the protein, and residues involved in glycerol selectivity are reviewed within a phylogenetic framework. Furthermore, functional diversification of human and Arabidopsis paralogs are analyzed in an evolutionary genomic context. GENERAL SIGNIFICANCE: Our results show that while bacteria and archaea generally function with one copy of each a water channel (aquaporin or AQP) and a GLP, recurrent independent expansions have greatly diversified the structures and functions of the different members of both MIP paralog subfamilies throughout eukaryote evolution (and not only in flowering plants and vertebrates, as previously thought). This article is part of a Special Issue entitled Aquaporins.


Assuntos
Evolução Química , Proteínas de Membrana/química , Sequência de Aminoácidos , Animais , Proteínas Arqueais/química , Proteínas de Bactérias/química , Proteínas Fúngicas/química , Proteínas de Membrana/classificação , Dados de Sequência Molecular , Filogenia , Plantas/química , Conformação Proteica , Homologia de Sequência de Aminoácidos
18.
BMC Evol Biol ; 15: 141, 2015 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-26183103

RESUMO

BACKGROUND: The European mink (Mustela lutreola, L. 1761) is a critically endangered mustelid, which inhabits several main river drainages in Europe. Here, we assess the genetic variation of existing populations of this species, including new sampling sites and additional molecular markers (newly developed microsatellite loci specific to European mink) as compared to previous studies. Probabilistic analyses were used to examine genetic structure within and between existing populations, and to infer phylogeographic processes and past demography. RESULTS: According to both mitochondrial and nuclear microsatellite markers, Northeastern (Russia, Estonia and Belarus) and Southeastern (Romania) European populations showed the highest intraspecific diversity. In contrast, Western European (France and Spain) populations were the least polymorphic, featuring a unique mitochondrial DNA haplotype. The high differentiation values detected between Eastern and Western European populations could be the result of genetic drift in the latter due to population isolation and reduction. Genetic differences among populations were further supported by Bayesian clustering and two main groups were confirmed (Eastern vs. Western Europe) along with two contained subgroups at a more local scale (Northeastern vs. Southeastern Europe; France vs. Spain). CONCLUSIONS: Genetic data and performed analyses support a historical scenario of stable European mink populations, not affected by Quaternary climate oscillations in the Late Pleistocene, and posterior expansion events following river connections in both North- and Southeastern European populations. This suggests an eastern refuge during glacial maxima (as already proposed for boreal and continental species). In contrast, Western Europe was colonised more recently following either natural expansions or putative human introductions. Low levels of genetic diversity observed within each studied population suggest recent bottleneck events and stress the urgent need for conservation measures to counteract the demographic decline experienced by the European mink.


Assuntos
Espécies em Perigo de Extinção , Variação Genética , Vison/genética , Animais , Teorema de Bayes , Conservação dos Recursos Naturais , DNA Mitocondrial/genética , Europa (Continente) , Deriva Genética , Repetições de Microssatélites , Filogenia , Dinâmica Populacional
19.
Mol Phylogenet Evol ; 93: 118-28, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26220836

RESUMO

In order to further resolve the phylogenetic relationships within Caenogastropoda, the complete mitochondrial (mt) genomes of Cochlostoma hidalgoi (Cyclophoroidea), Naticarius hebraeus (Naticoidea), Galeodea echinophora (Tonnoidea), and Columbella adansoni (Buccinoidea), and the partial mt genome of Erosaria spurca (Cypraeoidea) were sequenced. All newly determined mt genomes conformed to the consensus gene order of caenogastropods, except that of C. hidalgoi, which differed in the relative positions of the trnD, trnQ, trnG, trnY, and trnT genes. Phylogenetic reconstruction of the caenogastropod tree was performed using probabilistic methods and based on the deduced amino acid sequences of concatenated mt protein coding genes. The reconstructed phylogeny recovered Architaenioglossa (superfamilies Cyclophoroidea, Ampullarioidea, and Viviparoidea) as a grade. The monophyly of Sorbeoconcha (all caenogastropods but Architaenioglossa) was supported by most but not all phylogenetic analyses (excluding Vermetoidea, which has a long branch). The relative phylogenetic position of Cerithioidea with respect to Hypsogastropoda remains unresolved. The monophyly of Hypsogastropoda (without Vermetoidea) is strongly supported. Within this clade, Littorinimorpha should be considered a grade. Several superfamilies (Abyssochrysoidea, Rissooidea, Truncatelloidea, and Naticoidea) branched off successively before a siphonate clade (Stromboidea, Cypraeoidea, Tonnoidea, Neogastropoda), which is strongly supported. The relative phylogenetic position of Vermetoidea could not be determined due to long-branch attraction artifacts. The superfamily Tonnoidea was recovered within Neogastropoda, which questions the monophyly of the latter as traditionally defined. The polyphyly of Muricoidea could be tentatively resolved excluding the families Volutidae and Babyloniidae, which would imply raising them to the rank of superfamilies.


Assuntos
Gastrópodes/genética , Genoma Mitocondrial , Sequência de Aminoácidos , Animais , Sequência de Bases , Ordem dos Genes , Especiação Genética , Anotação de Sequência Molecular , Filogenia , Análise de Sequência de DNA
20.
Biochim Biophys Acta ; 1828(1): 4-14, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22366062

RESUMO

Gap junctions are intercellular channels that link the cytoplasm of neighboring cells in animals, enabling straight passage of ions and small molecules. Two different protein families, pannexins and connexins, form these channels. Pannexins are present in all eumetazoans but echinoderms (and are termed innexins in non-chordates) whereas connexins are exclusive of chordates. Despite little sequence similarity, both types of proteins assemble into a common secondary structure with four hydrophobic transmembrane domains linked by one cytoplasmic and two extracellular loops. Although all pannexins and connexins are packed into hexamers forming single channels, only non-chordate pannexins (innexins) and connexins form gap junctions. Here, we revisit and review evolutionary features of pannexin and connexin protein families. For that, we retrieved members of both families from several complete genome projects, and searched for conserved positions in the independent alignments of pannexin and connexin protein families. In addition, the degree of evolutionary conservation was mapped onto the 3D structure of a connexon (i.e. the assembly of six connexins). Finally, we reconstructed independent phylogenies of pannexins and connexins using probabilistic methods of inference. Non-chordate (Drosophila and Caenorhabditis) pannexins (i.e. innexins) were recovered as sister group of chordate pannexins, which included Ciona paralogs and vertebrate pannexins (pannexin-1 and pannexin-3 were recovered as sister groups to the exclusion of pannexin-2). In the reconstructed phylogeny of connexins, subfamilies α and ß were recovered as sister groups to the exclusion of subfamily γ, whereas δ and (the newly identified) ζ subfamilies were recovered at the base of the tree. A sixth highly divergent subfamily (ε) was not included in the phylogenetic analyses. Several groups of paralogy were identified within each subfamily. This article is part of a Special Issue entitled: The Communicating junctions, roles and dysfunctions.


Assuntos
Conexinas/genética , Evolução Molecular , Filogenia , Sequência de Aminoácidos , Animais , Conexinas/química , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Homologia de Sequência de Aminoácidos , Homologia Estrutural de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA