Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(12): 3744-3749, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38483127

RESUMO

Ultrafast nonlinearity, which results in modulation of the linear optical response, is a basis for the development of time-varying media, in particular those operating in the epsilon-near-zero (ENZ) regime. Here, we demonstrate that the intraband excitation of hot electrons in the ENZ film results in a second-harmonic resonance shift of ∼10 THz (40 nm) and second-harmonic generation (SHG) intensity changes of >100% with only minor (<1%) changes in linear transmission. The modulation is 10-fold enhanced by a plasmonic metasurface coupled to a film, allowing for ultrafast modulation of circularly polarized SHG. The effect is described by the plasma frequency renormalization in the ENZ material and the modification of the electron damping, with a possible influence of the hot-electron dynamics on the quadratic susceptibility. The results elucidate the nature of the second-order nonlinearity in ENZ materials and pave the way to the rational engineering of active nonlinear metamaterials and metasurfaces for time-varying applications.

2.
Light Sci Appl ; 13(1): 93, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38653978

RESUMO

Optical pulling provides a new degree of freedom in optical manipulation. It is generally believed that long-range optical pulling forces cannot be generated by the gradient of the incident field. Here, we theoretically propose and numerically demonstrate the realization of a long-range optical pulling force stemming from a self-induced gradient field in the manipulated object. In analogy to potential barriers in quantum tunnelling, we use a photonic band gap design in order to obtain the intensity gradients inside a manipulated object placed in a photonic crystal waveguide, thereby achieving a pulling force. Unlike the usual scattering-type optical pulling forces, the proposed gradient-field approach does not require precise elimination of the reflection from the manipulated objects. In particular, the Einstein-Laub formalism is applied to design this unconventional gradient force. The magnitude of the force can be enhanced by a factor of up to 50 at the optical resonance of the manipulated object in the waveguide, making it insensitive to absorption. The developed approach helps to break the limitation of scattering forces to obtain long-range optical pulling for manipulation and sorting of nanoparticles and other nano-objects. The developed principle of using the band gap to obtain a pulling force may also be applied to other types of waves, such as acoustic or water waves, which are important for numerous applications.

3.
Nat Commun ; 15(1): 703, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38267406

RESUMO

Applications in photodetection, photochemistry, and active metamaterials and metasurfaces require fundamental understanding of ultrafast nonthermal and thermal electron processes in metallic nanosystems. Significant progress has been recently achieved in synthesis and investigation of low-loss monocrystalline gold, opening up opportunities for its use in ultrathin nanophotonic architectures. Here, we reveal fundamental differences in hot-electron thermalisation dynamics between monocrystalline and polycrystalline ultrathin (down to 10 nm thickness) gold films. Comparison of weak and strong excitation regimes showcases a counterintuitive unique interplay between thermalised and non-thermalised electron dynamics in mesoscopic gold with the important influence of the X-point interband transitions on the intraband electron relaxation. We also experimentally demonstrate the effect of hot-electron transfer into a substrate and the substrate thermal properties on electron-electron and electron-phonon scattering in ultrathin films. The hot-electron injection efficiency from monocrystalline gold into TiO2, approaching 9% is measured, close to the theoretical limit. These experimental and modelling results reveal the important role of crystallinity and interfaces on the microscopic electronic processes important in numerous applications.

4.
Nat Commun ; 15(1): 2840, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565552

RESUMO

Two-dimensional single crystal metals, in which the behavior of highly confined optical modes is intertwined with quantum phenomena, are highly sought after for next-generation technologies. Here, we report large area (>104 µm2), single crystal two-dimensional gold flakes (2DGFs) with thicknesses down to a single nanometer level, employing an atomic-level precision chemical etching approach. The decrease of the thickness down to such scales leads to the quantization of the electronic states, endowing 2DGFs with quantum-confinement-augmented optical nonlinearity, particularly leading to more than two orders of magnitude enhancement in harmonic generation compared with their thick polycrystalline counterparts. The nanometer-scale thickness and single crystal quality makes 2DGFs a promising platform for realizing plasmonic nanostructures with nanoscale optical confinement. This is demonstrated by patterning 2DGFs into nanoribbon arrays, exhibiting strongly confined near infrared plasmonic resonances with high quality factors. The developed 2DGFs provide an emerging platform for nanophotonic research and open up opportunities for applications in ultrathin plasmonic, optoelectronic and quantum devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA