Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Foods ; 12(10)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37238874

RESUMO

Due to its "generally recognized as safe status" (GRAS) and moderate treatment temperatures, non-thermal plasma (NTP) has lately been considered a suitable replacement for chemicals in the modification of food properties and for preserving food quality. One of the promising areas for the application of NTP is the treatment of wheat flour, leading to improved flour properties and product quality and consequently to higher customer satisfaction. In the present research, the German wheat flour type 550, equivalent to all-purpose flour, was treated using NTP in a rotational reactor to determine the influence of short treatment times (≤5 min) on the properties of flour (moisture and fat content, protein, starch, color, microbial activity, and enzymes), dough (visco-elastic properties, starch, wet and dry gluten, and water absorption), and baking products (color, freshness, baked volume, crumb structure, softness, and elasticity). Based on the properties of NTP, it was expected that even very short treatment times would have a significant effect on the flour particles, which could positively affect the quality of the final baking product. Overall, the experimental analysis showed a positive effect of NTP treatment of wheat flour, e.g., decreased water activity value (<0.7), which is known to positively affect flour stability and product shelf life; dough stability increased (>8% after 5 min. treatment); dough extensibility increased (ca. 30% after 3 min treatment); etc. Regarding the baking product, further positive effects were detected, e.g., enhanced product volume (>9%), improved crumb whiteness/decreased crumb yellowness, softening of breadcrumb without a change in elasticity, and limited microorganism and enzymatic activity. Furthermore, no negative effects on the product quality were observed, even though further food quality tests are required. The presented experimental research confirms the overall positive influence of NTP treatment, even for very low treatment times, on wheat flour and its products. The presented findings are significant for the potential implementation of this technique on an industrial level.

2.
Front Chem ; 8: 511012, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33195041

RESUMO

The baking process demands a high amount of energy, but only one-third of the total energy supply to the baking oven is actually used for baking, while the rest is dissipated to the environment. This implies that the energy input to the baking process can be significantly reduced, e.g., by enabling a more efficient heat transfer to the product, compared to commercially available ovens. Application of highly radiative, gas-fired heat sources, with a wide power modulation range, such as porous volumetric ceramic burners (VCB), can lead to a reduction in both the baking time and the energy input to a baking oven. In order to optimize energy input to a wide variety of baking products, the role of individual mechanisms in heat transfer between a heat source and a baking product needs to be determined. In the scope of this work, the analysis of the heat transfer within a baking oven model, heated by porous VCBs, was conducted. Contribution of heat transfer mechanisms (heat conduction, convection, thermal radiation) to the total heat transfer was determined by the difference method, where two aluminum cubes of different surface characteristics were used as target objects. Further, the influence of water, commonly added to the baking chamber in form of steam or aerosol, on the heat transfer characteristics within the oven was investigated. Without water addition, the heat transfer between the porous VCBs and the test object occurred mainly through thermal radiation (~45%), followed by heat conduction and convection (~27.5% each). Compared to the reference, commercially available electrical deck baking oven, the share of thermal radiation in the model oven was increased (+ 10%), whereas the share of heat conduction was reduced (-20%). With water addition, the heat transfer to the test object through heat conduction, convection, and thermal radiation declined, as an additional heat transfer through condensation took place. Results of this research provide necessary understanding of the heat transfer mechanisms within the novel baking oven, heated by porous VCBs. They are the base for optimization of the heat transfer from the VCBs to different baking goods, through changing the VCB's operating parameters.

3.
Materials (Basel) ; 13(10)2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32414102

RESUMO

Wettability, roughness and surface treatment methods are essential for the majority of practical applications, where liquid-solid surface interactions take place. The present study experimentally investigated the influence of different mechanical surface treatment methods on the static wettability of uncoated and amphiphobic-coated aluminium alloy (AlMg3) samples, specially focusing on the interaction between surface finishing and coating. Five different surfaces were prepared: as-received substrate, polished, sandpapered, fleece-abraded and sandblasted. After characterisation, the samples were spray-coated using an amphiphobic coating. The characterisation of the uncoated and coated samples involved measurements of the roughness parameters and the apparent contact angles of demineralized water and rapeseed oil. The coating was initially characterised regarding its adhesion to the sample and elevated temperature stability. The applied surface treatments resulted in the scattered sample roughness in the range of Sa = 0.3-15.8 µm, water contact angles of θ a p , w = 78°-106° and extremely low oil contact angles. Coating the samples more than doubled the surface roughness to Sa = 13.3-29 µm, whereas the initial surface treatment properties (structure, anisotropy, etc.) were entirely repressed by the coating properties. Coating led the water contact angles to increase to θ a p , w _ c o a t e d = 162°-173° and even more pronounced oil contact angles to increase to θ a p , o _ c o a t e d = 139°-150°, classifying the surfaces as superhydrophobic and oleophobic.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA