Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Photochem Photobiol Sci ; 22(7): 1603-1610, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36930449

RESUMO

The feasibility of using advanced oxidation processes (AOPs) for abatement of ammonia from livestock buildings was examined in a series of pilot plant experiments. In this study, all the experiments were conducted in a two-step unit containing a dry photolytic reactor (UV185/UV254/O3) and a photochemical scrubber (UV254/H2O2). The unit efficiency was tested for two initial ammonia concentrations (20 and 35 ppmv) and three different air flows (150, 300 and 450 m3·h-1). While the first step removes mainly organic pollutants that are often present together with ammonia in the air and ammonia only partially, the second step removes around 90% of ammonia emissions even at the highest flow rate of 450 m3·h-1. Absorbed ammonia in the aqueous phase can be effectively removed without adjusting the pH (i.e. without the addition of other additives) using UV and ozone. Complete removal of ammonia was achieved after 15 h of irradiation. In order to assess the price efficiency of the suggested technology and to be able to compare it with other methods the figures-of-merit were determined. The price needed for lowering ammonia emission by one order of magnitude is 0.002 € per cubic meter of treated air at the highest flow rate of 450 m3·h-1 and for initial ammonia concentrations of 20 ppmv. These findings demonstrate that AOPs are a promising method for ammonia abatement from livestock buildings which are rarely using any waste air treatment method.

2.
Sensors (Basel) ; 22(23)2022 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-36501920

RESUMO

Glyphosate is one of the most widely used pesticides, which, together with its primary metabolite aminomethylphosphonic acid, remains present in the environment. Many technologies have been developed to reduce glyphosate amounts in water. Among them, heterogeneous photocatalysis with titanium dioxide as a commonly used photocatalyst achieves high removal efficiency. Nevertheless, glyphosate is often converted to organic intermediates during its degradation. The detection of degraded glyphosate and emerging products is, therefore, an important element of research in terms of disposal methods. Attention is being paid to new sensors enabling the fast detection of glyphosate and its degradation products, which would allow the monitoring of its removal process in real time. The surface plasmon resonance imaging (SPRi) method is a promising technique for sensing emerging pollutants in water. The aim of this work was to design, create, and test an SPRi biosensor suitable for the detection of glyphosate during photolytic and photocatalytic experiments focused on its degradation. Cytochrome P450 and TiO2 were selected as the detection molecules. We developed a sensor for the detection of the target molecules with a low molecular weight for monitoring the process of glyphosate degradation, which could be applied in a flow-through arrangement and thus detect changes taking place in real-time. We believe that SPRi sensing could be widely used in the study of xenobiotic removal from surface water or wastewater.


Assuntos
Herbicidas , Praguicidas , Poluentes Químicos da Água , Herbicidas/análise , Ressonância de Plasmônio de Superfície , Poluentes Químicos da Água/análise , Água
3.
Artigo em Inglês | MEDLINE | ID: mdl-31868088

RESUMO

The reduction of ammonia emissions from air was experimentally investigated by advanced oxidation processes (AOPs) utilizing the combination of ultraviolet irradiation with ozone. The influence of operating conditions such as initial ammonia concentration and flow rate of gas on the reduction of ammonia concentration was investigated in homemade photochemical unit. The conversion of ammonia decreased with increasing initial concentration of ammonia and with increasing flow rate of air (decreasing retention time). The highest conversion of ammonia (97%) was achieved under lower initial concentration of ammonia (30 ppm) and lower flow rate of air (28 m3/h). The energy per order was evaluated for the advanced oxidation process too. The energy consumption was about 0.037 kWh/m3/order for the 97% ammonia conversion at 30 ppm of initial ammonia concentration and 28 m3/h flow rate of air. Based on the results, the advanced oxidation process combining the UV irradiation and ozone was effective for mitigation of ammonia concentration and presents a promising technology for the reduction of odor emissions from livestock buildings. Moreover, the AOPs are suitable for application for high flow rate of air, especially for ammonia abatement from livestock buildings, where very high efficiency is expected.


Assuntos
Poluentes Atmosféricos/análise , Amônia/análise , Recuperação e Remediação Ambiental/métodos , Ozônio/química , Raios Ultravioleta , Poluentes Atmosféricos/química , Poluentes Atmosféricos/efeitos da radiação , Amônia/química , Amônia/efeitos da radiação , Recuperação e Remediação Ambiental/instrumentação , Peróxido de Hidrogênio/química , Oxirredução
4.
Chemosphere ; 312(Pt 1): 137165, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36356810

RESUMO

Well-known methods for measuring permeability of membranes include static or flow diffusion chambers. When studying the effects of organic compounds on plants, the use of such model systems allows to investigate xenobiotic behavior at the cuticular barrier level and obtain an understanding of the initial penetration processes of these substances into plant leaves. However, the use of diffusion chambers has disadvantages, including being time-consuming, requiring sampling, or a sufficiently large membrane area, which cannot be obtained from all types of plants. Therefore, we propose a new method based on surface plasmon resonance imaging (SPRi) to enable rapid membrane permeability evaluation. This study presents the methodology for measuring permeability of isolated cuticles for organic compounds via surface plasmon resonance detection, where the selected model analyte was the widely used pesticide metazachlor. Experiments were performed on the cuticles of Ficus elastica, Citrus pyriformis, and an artificial PES membrane, which is used in passive samplers for the detection of xenobiotics in water and soils. The average permeability for metazachlor was 5.23 × 10-14 m2 s-1 for C. pyriformis, 1.34 × 10-13 m2 s-1 for F. elastica, and 7.74 × 10-12 m2 s-1 for the PES membrane. We confirmed that the combination of a flow-through diffusion cell and real-time optical detection of transposed molecules represents a promising method for determining the permeability of membranes to xenobiotics occurring in the environment. This is necessary for determining a pesticide dosage in agriculture, selecting suitable membranes for passive samplers in analytics, testing membranes for water treatment, or studying material use of impregnated membranes.


Assuntos
Praguicidas , Epiderme Vegetal , Epiderme Vegetal/metabolismo , Ressonância de Plasmônio de Superfície , Borracha , Compostos Orgânicos/metabolismo , Permeabilidade , Plantas/metabolismo , Praguicidas/metabolismo
5.
Materials (Basel) ; 14(21)2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34772134

RESUMO

Copper-containing mixed metal oxides are one of the most promising catalysts of selective catalytic oxidation of ammonia. These materials are characterized by high catalytic efficiency; however, process selectivity to dinitrogen is still an open challenge. The set of Cu-Zn-Al-O and Ce/Cu-Zn-Al-O mixed metal oxides were tested as catalysts of selective catalytic oxidation of ammonia. At the low-temperature range, from 250 °C up to 350 °C, materials show high catalytic activity and relatively high selectivity to dinitrogen. Samples with the highest Cu loading 12 and 15 mol.% of total cation content were found to be the most active materials. Additional sample modification by wet impregnation of cerium (8 wt.%) improves catalytic efficiency, especially N2 selectivity. The comparison of catalytic tests with results of physicochemical characterization allows connecting the catalysts efficiency with the form and distribution of CuO on the samples' surface. The bulk-like well-developed phases were associated with sample activity, while the dispersed CuO phases with dinitrogen selectivity. Material characterization included phase composition analysis (X-ray powder diffraction, UV-Vis diffuse reflectance spectroscopy), determination of textural properties (low-temperature N2 sorption, scanning electron microscopy) and sample reducibility analysis (H2 temperature-programmed reduction).

6.
Nanomaterials (Basel) ; 11(11)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34835867

RESUMO

Diclofenac (DC) and ibuprofen (IBU) are widely prescribed non-steroidal anti-inflammatory drugs, the consumption of which has rapidly increased in recent years. The biodegradability of pharmaceuticals is negligible and their removal efficiency by wastewater treatment is very low. Therefore, the beidelitte (BEI) as unique nanomaterial was modified by the following different surfactants: cetylpyridinium (CP), benzalkonium (BA) and tetradecyltrimethylammonium (TD) bromides. Organobeidellites were tested as potential nanosorbents for analgesics. The organobeidellites were characterized using X-ray powder diffraction (XRD), Infrared spectroscopy (IR), Thermogravimetry and differential thermal analysis (TG/DTA) and scanning microscopy (SEM). The equilibrium concentrations of analgesics in solution were determined using UV-VIS spectroscopy. The intercalation of surfactants into BEI structure was confirmed both using XRD analysis due to an increase in basal spacing from 1.53 to 2.01 nm for BEI_BA and IR by decreasing in the intensities of bands related to the adsorbed water. SEM proved successful in the uploading of surfactants by a rougher and eroded organobeidellite surface. TG/DTA evaluated the decrease in dehydration/dehydroxylation temperatures due to higher hydrophobicity. The Sorption experiments demonstrated a sufficient sorption ability for IBU (55-86%) and an excellent ability for DC (over 90%). The maximum adsorption capacity was found for BEI_BA-DC (49.02 mg·g-1). The adsorption according to surfactant type follows the order BEI_BA > BEI_TD > BEI_CP.

7.
Water Res ; 120: 245-255, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28500989

RESUMO

This study was performed to test the feasibility of several decontamination methods for remediating heavily contaminated groundwater in a real contaminated locality in the Czech Republic, where a pharmaceuticals plant has been in operation for more than 80 years. The site is polluted mainly by recalcitrant psychopharmaceuticals and monoaromatic hydrocarbons, such as benzene, toluene and chlorobenzene. For this purpose, an advanced oxidation technique employing UV radiation with hydrogen peroxide dosing was employed, in combination with simple aeration pretreatment. The results showed that UV/H2O2 was an efficient and necessary step for degradation of the pharmaceuticals; however, the monoaromatics were already removed during the aeration step. Characterization of the removal mechanisms participating in the aeration revealed that volatilization, co-precipitation and biodegradation contributed to the process. These findings were supported by bacterial metabolite analyses, phospholipid fatty acid analysis, qPCR of representatives of the degradative genes and detailed characterization of the formed precipitate using Mössbauer spectroscopy and scanning electron microscopy. Further tests were carried out in a continuous arrangement directly connected to the wells already present in the locality. The results documented the feasibility of combination of the photo-reactor employing UV/H2O2 together with aeration pretreatment for 4 months, where the overall decontamination efficiency ranged from 72% to 99% of the pharmaceuticals. We recorded even better results for the monoaromatics decontamination except for one month, when we encountered some technical problems with the aeration pump. This demonstrated the necessity of using the aeration step.


Assuntos
Poluição Ambiental/prevenção & controle , Água Subterrânea , Poluentes Químicos da Água , Benzeno , Biodegradação Ambiental , Clorobenzenos , República Tcheca , Peróxido de Hidrogênio , Preparações Farmacêuticas , Tolueno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA