Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Clin Infect Dis ; 76(3): e240-e249, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35717657

RESUMO

BACKGROUND: The rapid emergence of the Omicron variant and its large number of mutations led to its classification as a variant of concern (VOC) by the World Health Organization. Subsequently, Omicron evolved into distinct sublineages (eg, BA.1 and BA.2), which currently represent the majority of global infections. Initial studies of the neutralizing response toward BA.1 in convalescent and vaccinated individuals showed a substantial reduction. METHODS: We assessed antibody (immunoglobulin G [IgG]) binding, ACE2 (angiotensin-converting enzyme 2) binding inhibition, and IgG binding dynamics for the Omicron BA.1 and BA.2 variants compared to a panel of VOCs/variants of interest, in a large cohort (N = 352) of convalescent, vaccinated, and infected and subsequently vaccinated individuals. RESULTS: While Omicron was capable of efficiently binding to ACE2, antibodies elicited by infection or immunization showed reduced binding capacities and ACE2 binding inhibition compared to wild type. Whereas BA.1 exhibited less IgG binding compared to BA.2, BA.2 showed reduced inhibition of ACE2 binding. Among vaccinated samples, antibody binding to Omicron only improved after administration of a third dose. CONCLUSIONS: Omicron BA.1 and BA.2 can still efficiently bind to ACE2, while vaccine/infection-derived antibodies can bind to Omicron. The extent of the mutations within both variants prevents a strong inhibitory binding response. As a result, both Omicron variants are able to evade control by preexisting antibodies.


Assuntos
Enzima de Conversão de Angiotensina 2 , Imunoglobulina G , Humanos , Imunização , Mutação , Complicações Pós-Operatórias , Anticorpos Antivirais , Anticorpos Neutralizantes
2.
EMBO Rep ; 22(5): e52325, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33904225

RESUMO

In light of the COVID-19 pandemic, there is an ongoing need for diagnostic tools to monitor the immune status of large patient cohorts and the effectiveness of vaccination campaigns. Here, we present 11 unique nanobodies (Nbs) specific for the SARS-CoV-2 spike receptor-binding domain (RBD), of which 8 Nbs potently inhibit the interaction of RBD with angiotensin-converting enzyme 2 (ACE2) as the major viral docking site. Following detailed epitope mapping and structural analysis, we select two inhibitory Nbs, one of which binds an epitope inside and one of which binds an epitope outside the RBD:ACE2 interface. Based on these, we generate a biparatopic nanobody (bipNb) with viral neutralization efficacy in the picomolar range. Using bipNb as a surrogate, we establish a competitive multiplex binding assay ("NeutrobodyPlex") for detailed analysis of the presence and performance of neutralizing RBD-binding antibodies in serum of convalescent or vaccinated patients. We demonstrate that NeutrobodyPlex enables high-throughput screening and detailed analysis of neutralizing immune responses in infected or vaccinated individuals, to monitor immune status or to guide vaccine design.


Assuntos
COVID-19 , Anticorpos de Domínio Único , Anticorpos Antivirais/metabolismo , Humanos , Imunidade , Pandemias , Ligação Proteica , SARS-CoV-2 , Anticorpos de Domínio Único/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo
3.
Anal Chem ; 94(27): 9863-9871, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35749695

RESUMO

N-linked glycosylation is a ubiquitous posttranslational modification of proteins. While it plays an important role in the biological function of proteins, it often poses a major challenge for their analytical characterization. Currently available peptide N-glycanases (PNGases) are often inefficient at deglycosylating proteins due to sterically inaccessible N-glycosylation sites. This usually leads to poor sequence coverage in bottom-up analysis using liquid chromatography with tandem mass spectrometry and makes it impossible to obtain an intact mass signal in top-down MS analysis. In addition, most PNGases operate optimally only in the neutral to slightly acidic pH range and are severely compromised in the presence of reducing and denaturing substances, which limits their use for advanced bioanalysis based on hydrogen-deuterium exchange in combination with mass spectrometry (HDX-MS). Here, we present a novel peptide N-glycanase from Rudaea cellulosilytica (PNGase Rc) for which we demonstrate broad substrate specificity for N-glycan hydrolysis from multiply occupied and natively folded proteins. Our results show that PNGase Rc is functional even under challenging, HDX quenching conditions (pH 2.5, 0 °C) and in the presence of 0.4 M tris(2-carboxyethyl)phosphine, 4 M urea, and 1 M guanidinium chloride. Most importantly, we successfully applied the PNGase Rc in an HDX-MS workflow to determine the epitope of a nanobody targeting the extracellular domain of human signal-regulating protein alpha (SIRPα).


Assuntos
Medição da Troca de Deutério , Hidrogênio , Deutério , Medição da Troca de Deutério/métodos , Mapeamento de Epitopos , Humanos , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/metabolismo , Espectrometria de Massas em Tandem
4.
Bioconjug Chem ; 32(9): 1960-1965, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34406760

RESUMO

N-Hydroxysuccinimide esters of small molecules are widely used to modify biomolecules such as antibodies or proteins. Primary amine groups preferably react with the ester to form covalent amide bonds. Currently, protocols strongly recommend replacing the buffer reagent tris(hydroxymethyl)aminomethane, and it has even been proposed as a stop reagent. Here, we show that TRIS indeed does not interfere with biotinylation of biomolecules with NHS chemistry.


Assuntos
Succinimidas , Biotinilação , Trometamina
5.
Biotechnol Bioeng ; 118(3): 1091-1104, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33200817

RESUMO

A high degree of charge heterogeneity is an unfavorable phenomenon commonly observed for therapeutic monoclonal antibodies (mAbs). Removal of these impurities during manufacturing often comes at the cost of impaired step yields. A wide spectrum of posttranslational and chemical modifications is known to modify mAb charge. However, a deeper understanding of underlying mechanisms triggering charged species would be beneficial for the control of mAb charge variants during bioprocessing. In this study, a comprehensive analytical investigation was carried out to define the root causes and mechanisms inducing acidic variants of an immunoglobulin G1-derived mAb. Characterization of differently charged species by liquid chromatography-mass spectrometry revealed the reduction of disulfide bonds in acidic variants, which is followed by cysteinylation and glutathionylation of cysteines. Importantly, biophysical stability and integrity of the mAb are not affected. By in vitro incubation of the mAb with the reducing agent cysteine, disulfide bond degradation was directly linked to an increase of numerous acidic species. Modifying the concentrations of cysteine during the fermentation of various mAbs illustrated that redox potential is a critical aspect to consider during bioprocess development with respect to charge variant control.


Assuntos
Anticorpos Monoclonais , Cisteína/química , Dissulfetos/química , Imunoglobulina G , Animais , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/química , Anticorpos Monoclonais/isolamento & purificação , Células CHO , Técnicas de Cultura de Células , Cromatografia Líquida , Cricetulus , Imunoglobulina G/biossíntese , Imunoglobulina G/química , Imunoglobulina G/isolamento & purificação
6.
J Immunol ; 196(2): 857-65, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26673137

RESUMO

It had been thought that complement factor D (FD) is activated at the site of synthesis, and only FD lacking a propeptide is present in blood. The serum of mannose-binding lectin-associated serine protease (MASP)-1/3(-/-) mice contains pro-FD and has markedly reduced alternative pathway activity. It was suggested that MASP-1 and MASP-3 directly activate pro-FD; however, other experiments contradicted this view. We decided to clarify the involvement of MASPs in pro-FD activation in normal, as opposed to deficient, human plasma and serum. Human pro-FD containing an APPRGR propeptide was produced in insect cells. We measured its activation kinetics using purified active MASP-1, MASP-2, MASP-3, as well as thrombin. We found all these enzymes to be efficient activators, whereas MASP proenzymes lacked such activity. Pro-FD cleavage in serum or plasma was quantified by a novel assay using fluorescently labeled pro-FD. Labeled pro-FD was processed with t1/2s of ∼ 3 and 5 h in serum and plasma, respectively, showing that proteolytic activity capable of activating pro-FD exists in blood even in the absence of active coagulation enzymes. Our previously developed selective MASP-1 and MASP-2 inhibitors did not reduce pro-FD activation at reasonable concentration. In contrast, at very high concentration, the MASP-2 inhibitor, which is also a poor MASP-3 inhibitor, slowed down the activation. When recombinant MASPs were added to plasma, only MASP-3 could reduce the half-life of pro-FD. Combining our quantitative data, MASP-1 and MASP-2 can be ruled out as direct pro-FD activators in resting blood; however, active MASP-3 is a very likely physiological activator.


Assuntos
Via Alternativa do Complemento/imunologia , Serina Proteases Associadas a Proteína de Ligação a Manose/imunologia , Fator D do Complemento/imunologia , Inibidores Enzimáticos/farmacologia , Humanos , Serina Proteases Associadas a Proteína de Ligação a Manose/metabolismo , Espectrometria de Massas
7.
Ann Surg Oncol ; 24(6): 1650-1657, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28160138

RESUMO

BACKGROUND: Hyperthermic intraperitoneal chemotherapy (HIPEC) is used to treat peritoneal surface malignancies with application of cytostatic drugs such as oxaliplatin (OX) after cytoreductive surgery. Despite its increased use, evidence for optimal drug dosage, and notably duration of HIPEC, is scarce. METHODS: In this study, OX distribution was comprehensively assessed in nine patients during HIPEC (300 mg OX/m2 body surface area in Physioneal solution for 30 min). Oxaliplatin and its derivatives were measured in peritoneal perfusates over time by liquid chromatography coupled with mass spectrometry (LC-MS), and the resulting total platinum concentration in tissue was analyzed by atomic absorption spectrometry. Additionally, a novel impedance-based real-time cytotoxicity assay was used to evaluate the bioactivity of perfusates ex vivo. RESULTS: Compared with amounts of OX expected in peritoneal perfusates by calculation, only 10-15% of the parent drug could be detected by LC-MS during HIPEC. Notably, the study additionally detected platinum compounds consistent with OX transformation, accounting for a further fraction of the applied drug. The cytotoxic properties of perfusates remained unchanged during HIPEC, with only a slight but significant attenuation evidenced after 30 min. CONCLUSIONS: The bioactivity of peritoneal perfusates ex vivo is a useful parameter for evaluating the actual cytotoxic potential of OX and its derivatives used in HIPEC over time, overcoming important limitations and disadvantages associated with respective drug monitoring only. Ex vivo cytotoxicity assays may be a promising tool to aid guiding future standardization and harmonization of HIPEC protocols based on drug-mediated effects.


Assuntos
Antineoplásicos/farmacologia , Quimioterapia do Câncer por Perfusão Regional , Protocolos Clínicos , Hipertermia Induzida , Compostos Organoplatínicos/farmacologia , Neoplasias Peritoneais/tratamento farmacológico , Projetos de Pesquisa , Adulto , Idoso , Terapia Combinada , Procedimentos Cirúrgicos de Citorredução , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Oxaliplatina , Neoplasias Peritoneais/patologia , Neoplasias Peritoneais/cirurgia , Prognóstico
8.
Biotechnol Bioeng ; 112(6): 1187-99, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25545851

RESUMO

In-depth analytical characterization of biotherapeutics originating from different production batches is mandatory to ensure product safety and consistent molecule efficacy. Previously, we have shown unintended incorporation of tyrosine (Tyr) and leucine/isoleucine (Leu/Ile) at phenylalanine (Phe) positions in a recombinant produced monoclonal antibody (mAb) using an orthogonal MASCOT/SIEVE based approach for mass spectrometry data analysis. The misincorporation could be avoided by sufficient supply of phenylalanine throughout the process. Several non-annotated signals in the primarily chromatographic peptide separation step for apparently single Phe→Tyr sequence variants (SVs) suggest a role for isobar tyrosine isoforms. Meta- and ortho-Tyr are spontaneously generated during aerobic fed-batch production processes using Chinese hamster ovary (CHO) cell lines. Process induced meta- and ortho-Tyr but not proteinogenic para-Tyr are incorporated at Phe locations in Phe-starved CHO cultures expressing a recombinant mAb. Furthermore, meta- and ortho-Tyr are preferably misincorporated over Leu. Structural modeling of the l-phenylalanyl-tRNA-synthetase (PheRS) substrate activation site indicates a possible fit of non-cognate ortho-Tyr and meta-Tyr substrates. Dose-dependent misincorporations of Tyr isoforms support the hypothesis that meta- and ortho-Tyr are competing, alternative substrates for PheRS in CHO processes. Finally, easily accessible at-line surrogate markers for Phe→Tyr SV formation in biotherapeutic production were defined by the calculation of critical ratios for meta-Tyr/Phe and ortho-Tyr/Phe to support early prediction of SV probability, and finally, to allow for immediate process controlled Phe→Tyr SV prevention.


Assuntos
Anticorpos Monoclonais/biossíntese , Células CHO/enzimologia , Células CHO/metabolismo , Fenilalanina-tRNA Ligase/metabolismo , Proteínas Recombinantes/biossíntese , Tirosina/metabolismo , Animais , Anticorpos Monoclonais/genética , Domínio Catalítico , Cricetulus , Feminino , Leucina/metabolismo , Modelos Moleculares , Fenilalanina-tRNA Ligase/química , Conformação Proteica , Proteínas Recombinantes/genética
9.
J Am Soc Mass Spectrom ; 34(11): 2556-2566, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37756257

RESUMO

Protein glycosylation is one of the most common PTMs and many cell surface receptors, extracellular proteins, and biopharmaceuticals are glycosylated. However, HDX-MS analysis of such important glycoproteins has so far been limited by difficulties in determining the HDX of the protein segments that contain glycans. We have developed a column containing immobilized PNGase Rc (from Rudaea cellulosilytica) that can readily be implemented into a conventional HDX-MS setup to allow improved analysis of glycoproteins. We show that HDX-MS with the PNGase Rc column enables efficient online removal of N-linked glycans and the determination of the HDX of glycosylated regions in several complex glycoproteins. Additionally, we use the PNGase Rc column to perform a comprehensive HDX-MS mapping of the binding epitope of a mAb to c-Met, a complex glycoprotein drug target. Importantly, the column retains high activity in the presence of common quench-buffer additives like TCEP and urea and performed consistent across 114 days of extensive use. Overall, our work shows that HDX-MS with the integrated PNGase Rc column can enable fast and efficient online deglycosylation at harsh quench conditions to provide comprehensive analysis of complex glycoproteins.


Assuntos
Glicoproteínas , Polissacarídeos , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase , Glicoproteínas/análise , Glicosilação , Polissacarídeos/metabolismo
10.
Front Immunol ; 14: 1264179, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38164132

RESUMO

Signal-regulatory protein α (SIRPα) expressed by myeloid cells is of particular interest for therapeutic strategies targeting the interaction between SIRPα and the "don't eat me" ligand CD47 and as a marker to monitor macrophage infiltration into tumor lesions. To address both approaches, we developed a set of novel human SIRPα (hSIRPα)-specific nanobodies (Nbs). We identified high-affinity Nbs targeting the hSIRPα/hCD47 interface, thereby enhancing antibody-dependent cellular phagocytosis. For non-invasive in vivo imaging, we chose S36 Nb as a non-modulating binder. By quantitative positron emission tomography in novel hSIRPα/hCD47 knock-in mice, we demonstrated the applicability of 64Cu-hSIRPα-S36 Nb to visualize tumor infiltration of myeloid cells. We envision that the hSIRPα-Nbs presented in this study have potential as versatile theranostic probes, including novel myeloid-specific checkpoint inhibitors for combinatorial treatment approaches and for in vivo stratification and monitoring of individual responses during cancer immunotherapies.


Assuntos
Neoplasias , Anticorpos de Domínio Único , Humanos , Camundongos , Animais , Anticorpos de Domínio Único/uso terapêutico , Fagocitose , Células Mieloides/metabolismo , Macrófagos/metabolismo , Neoplasias/terapia , Neoplasias/tratamento farmacológico
11.
J Proteome Res ; 10(7): 3031-9, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21561106

RESUMO

Human leukocyte receptor IIIa (hFcγRIIIa) plays a prominent role in the elimination of tumor cells by antibody-based cancer therapies. In previous studies, a major impact of the presence of carbohydrates at Asn-162 on the binding between the receptor and the Fc part of wild type fucosylated or glycoengineered nonfucosylated antibodies has been shown. In this study, we performed a site directed carbohydrate analysis at hFcγRIIIa derived from human embryonic kidney (HEK) and Chinese hamster ovary (CHO) cells, respectively. Using mass spectrometry (MS) and a multienzyme protein digest, we analyzed the proteolysis-generated glycopeptides in detail. We could show that hFcγRIIIa expressed by HEK cells was mostly bearing multifucosylated biantennary Asn162-glycans with a major fraction terminating with GalNAc residues replacing the more common Gal. We could demonstrate that the glycan antennae with terminal GalNAc could be sialylated as indicated by a novel reporter ion HexNAcHexNAcNeuAc(+) (m/z 698.28) using a source induced dissociation (SID) scan in the MS cycle. In contrast to the hFcγRIIIa Asn-162 glycosylation pattern from HEK cells, the CHO cells derived receptor contains bi- and triantennary galactosylated and highly sialylated carbohydrates. Our data suggest that the type of expression host system was a dominating factor for formation of distinct glycopatterns of hFcγRIIIa, while the protein sequence and the site of glycosylation remained unchanged for both types of cells. Using surface plasmon resonance (SPR) interaction analysis, we show that the cell type and site specific glycosylation pattern of hFcγRIIIa influences its binding behavior to immunoglobulin molecules.


Assuntos
Sítios de Ligação/imunologia , Imunoglobulina G/metabolismo , Leucócitos/química , Ligação Proteica/imunologia , Receptores de IgG , Proteínas Recombinantes/metabolismo , Acetilgalactosamina/imunologia , Acetilgalactosamina/metabolismo , Animais , Asparagina/metabolismo , Células CHO , Sequência de Carboidratos , Cricetinae , Cricetulus , Fucose/imunologia , Fucose/metabolismo , Glicopeptídeos/química , Glicopeptídeos/imunologia , Glicosilação , Células HEK293 , Humanos , Imunoglobulina G/imunologia , Leucócitos/imunologia , Leucócitos/metabolismo , Dados de Sequência Molecular , Polissacarídeos/química , Polissacarídeos/imunologia , Receptores de IgG/química , Receptores de IgG/genética , Receptores de IgG/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Especificidade da Espécie , Ressonância de Plasmônio de Superfície , Espectrometria de Massas em Tandem , Transfecção
12.
ACS Appl Mater Interfaces ; 13(46): 55534-55549, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34762399

RESUMO

A full understanding of the relationship between surface properties, protein adsorption, and immune responses is lacking but is of great interest for the design of biomaterials with desired biological profiles. In this study, polyelectrolyte multilayer (PEM) coatings with gradient changes in surface wettability were developed to shed light on how this impacts protein adsorption and immune response in the context of material biocompatibility. The analysis of immune responses by peripheral blood mononuclear cells to PEM coatings revealed an increased expression of proinflammatory cytokines tumor necrosis factor (TNF)-α, macrophage inflammatory protein (MIP)-1ß, monocyte chemoattractant protein (MCP)-1, and interleukin (IL)-6 and the surface marker CD86 in response to the most hydrophobic coating, whereas the most hydrophilic coating resulted in a comparatively mild immune response. These findings were subsequently confirmed in a cohort of 24 donors. Cytokines were produced predominantly by monocytes with a peak after 24 h. Experiments conducted in the absence of serum indicated a contributing role of the adsorbed protein layer in the observed immune response. Mass spectrometry analysis revealed distinct protein adsorption patterns, with more inflammation-related proteins (e.g., apolipoprotein A-II) present on the most hydrophobic PEM surface, while the most abundant protein on the hydrophilic PEM (apolipoprotein A-I) was related to anti-inflammatory roles. The pathway analysis revealed alterations in the mitogen-activated protein kinase (MAPK)-signaling pathway between the most hydrophilic and the most hydrophobic coating. The results show that the acute proinflammatory response to the more hydrophobic PEM surface is associated with the adsorption of inflammation-related proteins. Thus, this study provides insights into the interplay between material wettability, protein adsorption, and inflammatory response and may act as a basis for the rational design of biomaterials.


Assuntos
Anti-Inflamatórios/química , Materiais Revestidos Biocompatíveis/química , Citocinas/imunologia , Inflamação/imunologia , Polieletrólitos/química , Adsorção , Anti-Inflamatórios/farmacologia , Células Cultivadas , Materiais Revestidos Biocompatíveis/farmacologia , Citocinas/análise , Citocinas/biossíntese , Ensaio de Imunoadsorção Enzimática , Humanos , Interações Hidrofóbicas e Hidrofílicas , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Tamanho da Partícula , Polieletrólitos/farmacologia , Propriedades de Superfície , Molhabilidade
13.
Antibodies (Basel) ; 10(1)2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33808657

RESUMO

Annexin-A1 (ANXA1) belongs to a class of highly homologous Ca2+-dependent phospholipid-binding proteins. Its structure consists of a core region composed of four homologous repeats arranged in a compact, hydrolysis-resistant structure and an N-terminal region with a Ca2+-dependent conformation. ANXA1 is involved in several processes, including cell proliferation, apoptosis, metastasis, and the inflammatory response. Therefore, the development of antibodies blocking selected regions on ANXA1 holds great potential for the development of novel therapeutics treating inflammatory and cancer diseases. Here, we report the interaction site between an ANXA1-specific antibody known to inhibit T cell activation without adverse cytotoxic effects and ANXA1 using amide hydrogen-deuterium exchange mass spectrometry (HDX-MS). For the epitope determination, we applied two bottom-up HDX-MS approaches with pepsin digestion in solution and immobilized on beads. Both strategies revealed the interaction region within domain III of ANXA1 in Ca2+-bound conformation. The antibody-binding region correlates with the hydrophobic binding pocket of the N-terminal domain formed in the absence of calcium. This study demonstrates that even cryptic and flexible binding regions can be studied by HDX-MS, allowing a fast and efficient determination of the binding sites of antibodies which will help to define a mode of action profile for their use in therapy.

14.
Front Immunol ; 12: 799910, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34956237

RESUMO

The advancement of new immunotherapies necessitates appropriate probes to monitor the presence and distribution of distinct immune cell populations. Considering the key role of CD4+ cells in regulating immunological processes, we generated novel single-domain antibodies [nanobodies (Nbs)] that specifically recognize human CD4. After in-depth analysis of their binding properties, recognized epitopes, and effects on T-cell proliferation, activation, and cytokine release, we selected CD4-specific Nbs that did not interfere with crucial T-cell processes in vitro and converted them into immune tracers for noninvasive molecular imaging. By optical imaging, we demonstrated the ability of a high-affinity CD4-Nb to specifically visualize CD4+ cells in vivo using a xenograft model. Furthermore, quantitative high-resolution immune positron emission tomography (immunoPET)/MR of a human CD4 knock-in mouse model showed rapid accumulation of 64Cu-radiolabeled CD4-Nb1 in CD4+ T cell-rich tissues. We propose that the CD4-Nbs presented here could serve as versatile probes for stratifying patients and monitoring individual immune responses during personalized immunotherapy in both cancer and inflammatory diseases.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Imagem Molecular/métodos , Imagem Óptica/métodos , Anticorpos de Domínio Único , Animais , Xenoenxertos , Humanos , Camundongos
15.
Nat Commun ; 12(1): 1152, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33608538

RESUMO

The humoral immune response to SARS-CoV-2 is a benchmark for immunity and detailed analysis is required to understand the manifestation and progression of COVID-19, monitor seroconversion within the general population, and support vaccine development. The majority of currently available commercial serological assays only quantify the SARS-CoV-2 antibody response against individual antigens, limiting our understanding of the immune response. To overcome this, we have developed a multiplex immunoassay (MultiCoV-Ab) including spike and nucleocapsid proteins of SARS-CoV-2 and the endemic human coronaviruses. Compared to three broadly used commercial in vitro diagnostic tests, our MultiCoV-Ab achieves a higher sensitivity and specificity when analyzing a well-characterized sample set of SARS-CoV-2 infected and uninfected individuals. We find a high response against endemic coronaviruses in our sample set, but no consistent cross-reactive IgG response patterns against SARS-CoV-2. Here we show a robust, high-content-enabled, antigen-saving multiplex assay suited to both monitoring vaccination studies and facilitating epidemiologic screenings for humoral immunity towards pandemic and endemic coronaviruses.


Assuntos
Anticorpos Antivirais/imunologia , Teste Sorológico para COVID-19/métodos , COVID-19/imunologia , Reações Cruzadas , Imunidade Humoral , COVID-19/diagnóstico , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Humanos , Imunoensaio , Imunoglobulina G/imunologia , Fosfoproteínas/imunologia , SARS-CoV-2/imunologia , Sensibilidade e Especificidade , Glicoproteína da Espícula de Coronavírus/imunologia
16.
Artigo em Inglês | MEDLINE | ID: mdl-32719787

RESUMO

Peptide-N 4-(N-acetyl-ß-glucosaminyl) asparagine amidases (PNGases, N-glycanases, EC 3.5.1.52) are indispensable tools in releasing N-glycans from glycoproteins. So far, only a limited number of PNGase candidates are available for the structural analysis of glycoproteins and their glycan moieties. Herein, a panel of 13 novel PNGase H+ candidates (the suffix H+ refers to the acidic pH optimum of these acidobacterial PNGases) was tested in their recombinant form for their deglycosylation performance. One candidate (originating from the bacterial species Dyella japonica) showed superior properties both in solution-phase and immobilized on amino-, epoxy- and nitrilotriacetate resins when compared to currently acidic available PNGases. The high expression yield compared to a previously described PNGase H+, broad substrate specificity, and good storage stability of this novel N-glycanase makes it a valuable tool for the analysis of protein glycosylation.

17.
MAbs ; 9(6): 889-897, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28581887

RESUMO

The quality of recombinant proteins such as monoclonal antibodies produced using Chinese hamster ovary cell-based mammalian systems is dependent on many factors, including cell line, process and cell culture media. Due to these factors, the generated product is heterogeneous and may have chemically-induced modifications or post-translational modifications that affect antibody stability, functionality and, in some cases, patient safety. This study demonstrates that S-sulfocysteine, a cysteine derivative, can increase the antibody specific productivity in different cell lines cultivated with different processes while minimizing trisulfide linkages in generated mAbs, mainly between heavy and light chain. The supplementation of a cell culture feed with S-sulfocysteine also proved to be useful to reduce the percentage of antibody fragments generated from the monoclonal antibody. Overall, this new component used in the upstream process allows a reduction of product heterogeneity.

18.
Methods Mol Biol ; 901: 195-208, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22723103

RESUMO

Immunoglobulin (Ig) G is formed by two antigen-binding moieties termed Fabs and a conserved Fc -portion, which interacts with components of the immune systems. Within the Fc, N-linked carbohydrates are attached to each conserved asparagine residue at position 297 within the CH2 domain. These oligosaccharide moieties introduce a higher degree of heterogeneity within the molecule, by influencing stability of the antibody and its mediated effector functions, such as antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity (CDC). The carbohydrate moieties can vary strongly depending on the production host and can be manipulated by different fermentation conditions, thereby influencing the function of the antibody. Therefore it is necessary to carefully monitor changes in the carbohydrate composition during cell line development and production processes. This chapter describes two different mass spectrometry based methods used for analyses of the carbohydrate moieties attached to the Fc-part of human IgG1. In the first approach, the glycans are released from the antibody by endoglycosidase (Peptide N Glycosidase F) digestion and monitored by matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MS), whereas in the second method the carbohydrate structures, still attached to an enzymatically produced Fc-fragment, are analyzed by electrospray ionization mass spectrometry.


Assuntos
Anticorpos/metabolismo , Espectrometria de Massas/métodos , Animais , Glicosilação , Humanos , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
19.
PLoS One ; 7(7): e40328, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22792284

RESUMO

Sequence variants in recombinant biopharmaceuticals may have a relevant and unpredictable impact on clinical safety and efficacy. Hence, their sensitive analysis is important throughout bioprocess development. The two stage analytical approach presented here provides a quick multi clone comparison of candidate production cell lines as a first stage, followed by an in-depth analysis including identification and quantitation of aberrant sequence variants of selected clones as a second stage. We show that the differential analysis is a suitable tool for sensitive and fast batch to batch comparison of recombinant proteins. The optimized approach allows for detection of not only single amino acid substitutions in unmodified peptides, but also substitutions in posttranslational modified peptides such as glycopeptides, for detection of truncated or elongated sequence variants as well as double amino acid substitutions or substitution with amino acid structural isomers within one peptide. In two case studies we were able to detect sequence variants of different origin down to a sub percentage level. One of the sequence variants (Thr → Asn) could be correlated to a cytosine to adenine substitution at DNA (desoxyribonucleic acid) level. In the second case we were able to correlate the sub percentage substitution (Phe → Tyr) to amino acid limitation in the chemically defined fermentation medium.


Assuntos
Anticorpos Monoclonais/química , Imunoglobulina G/química , Software , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/isolamento & purificação , Sequência de Bases , Células CHO , Cromatografia em Gel , Cricetinae , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imunoglobulina G/genética , Imunoglobulina G/isolamento & purificação , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Fenilalanina/genética , Mutação Puntual , Proteólise , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Padrões de Referência , Análise de Sequência de DNA , Análise de Sequência de Proteína/métodos , Espectrometria de Massas em Tandem/normas , Tripsina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA