Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Opt Lett ; 49(8): 1872-1875, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38621027

RESUMO

The coupling of light into optical fibers is limited by the numerical aperture (NA). Here, we show that large-area polymer axial-symmetric microstructures printed on silica multimode fibers improve their incoupling performance by two to three orders of magnitude beyond the numerical aperture limit. A ray-optical mathematical model describing the impact of the grating-assisted light coupling complements the experimental investigation. This study clearly demonstrates the improvement of incoupling performance by nanoprinting microstructures on fibers, opening new horizons, to the best of our knowledge, for multimode fiber applications in life sciences, quantum technologies, and "lab-on-fiber" devices.

2.
Opt Lett ; 49(11): 3194-3197, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824361

RESUMO

Here, we demonstrate the realization of hollow-core light cages (LCs) on commercial step-index fibers using 3D nanoprinting, resulting in fully fiber-integrated devices. Two different light cage geometries with record-high aspect ratio strands and unique sidewise access to the core have been implemented, exhibiting excellent optical and mechanical properties. These achievements are based on the use of 3D nanoprinting to fabricate light cages and stabilize them with customized support elements. Overall, this approach results in novel, to the best of our knowledge, fiber-interfaced hollow-core devices that combine several advantages in a lab-on-a-fiber platform that is particularly useful for diffusion-related applications in environmental sciences, nanosciences, and quantum technologies.

3.
Opt Express ; 31(2): 2833-2845, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36785288

RESUMO

Here, we unlock the properties of the recently introduced on-chip hollow-core microgap waveguide in the context of optofluidics which allows for intense light-water interaction over long lengths with fast response times. The nanoprinted waveguide operates by the anti-resonance effect in the visible and near-infrared domain and includes a hollow core with defined gaps every 176 µm. The spectroscopic capabilities are demonstrated by various absorption-related experiments, showing that the Beer-Lambert law can be applied without any modification. In addition to revealing key performance parameters, time-resolved experiments showed a decisive improvement in diffusion times resulting from the lateral access provided by the microgaps. Overall, the microgap waveguide represents a pathway for on-chip spectroscopy in aqueous environments.

4.
Opt Express ; 30(2): 2768-2779, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35209410

RESUMO

Here, we introduce a quasi-analytic model that allows studying mode formation in low refractive index core waveguides through solely focusing on the cladding properties. The model isolates the reflection properties of the cladding from the modes via correlating the complex amplitude reflection coefficient of the cladding to the complex effective index of the fundamental core mode. The relevance and validity of the model are demonstrated by considering a single-ring anti-resonant fiber, revealing unexpected situations of exceptionally low loss. Our model explains mode formation by light scattering, which conceptually provides deep insights into the relevant physics.

5.
Opt Lett ; 44(21): 5169-5172, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31674958

RESUMO

Understanding the impact of geometric changes on the properties of otherwise symmetric nanostructures is of essential importance for nanophotonics. In this Letter, we show that intra- and inter-unit cell symmetry breaking can substantially modify the optical properties of nanotrimers from both the experimental and simulation aspect. Specifically, shifting the location of one nano-dot within the trimer unit cell leads to the formation of magnetic Fano resonances with loop-like polarization patterns that are not present in the symmetric configuration. We further unlock the impact of lattice modification on the optical response of square arrays of trimers with broken three-fold rotation symmetry and with intra-trimer distances as small as 25 nm, showing distinctively different spectral evolutions of the electric and magnetic Fano resonances. The results achieved highlight the symmetry breaking as an essential tool to unlock and strengthen predefined resonances, which can have important applications, particularly in the field of sensing.

6.
Opt Express ; 26(24): 31706-31716, 2018 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-30650753

RESUMO

Focusing light represents one of the fundamental optical functionalities that is used in a countless number of situations. Here we introduce the concept of nano-bore optical fiber mediated light focusing that allows to efficiently focus light at micrometer distance from the fiber end face. Since the focusing effect is provided by the fundamental fiber mode, device implementation is extremely straightforward since no post-processing or nano-structuring is necessary. Far-field measurements on implemented fibers, simulations, and a dual-Gaussian beam toy model confirm the validity of the concept. Due to its unique properties such as strong light localization, a close to 100% implementation success rate, extremely high reproducibility, and its compatibility with current fiber circuitry, the concept will find application in numerous areas that demand to focus at remote distances.

7.
Opt Express ; 25(19): 22467-22479, 2017 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-29041556

RESUMO

We present a single-channel photonic band gap fiber design allowing for guiding light inside a water core, which is surrounded by solid microstructured cladding, consisting of an array of high refractive index strands in silica. We address all relevant properties and show that the microstructure substantially reduces loss. We also introduce a ray reflection model, matching numerical modelling and allowing for time-effective large-scale parameter sweeps. Our single channel fiber concept is particularly valuable for applications demanding fast and reliable injection of liquids into the core, with potential impact in fields such as optofluidics, spectroscopy or bioanalytics.

8.
Opt Express ; 24(14): 15702-9, 2016 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-27410842

RESUMO

We analyze the modal attenuation properties of silica hollow-core fibers with a gold-wire based indefinite metamaterial cladding at 10.6 µm. We find that by varying the metamaterial feature sizes and core diameter, the loss discrimination can be tailored such that either the HE11, TE01 or TM01 mode has the lowest loss, which is particularly difficult to achieve for the radially polarized mode in commonly used hollow-core fibers. Furthermore, it is possible to tailor the HE11 and TM01 modes in the metamaterial-clad waveguide so that they possess attenuations lower than in hollow tubes composed of the individual constituent materials. We show that S-parameter retrieval techniques in combination with an anisotropic dispersion equation can be used to predict the loss discrimination properties of such fibers. These results pave the way for the design of metamaterial hollow-core fibers with novel guidance properties, in particular for applications demanding cylindrically polarized modes.

9.
Opt Express ; 24(18): 20515-28, 2016 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-27607656

RESUMO

We present a mathematical model that allows interpreting the dispersion and attenuation of modes in hollow-core fibers (HCFs) on the basis of single interface reflection, giving rise to analytic and semi-analytic expressions for the complex effective indices in the case where the core diameter is large and the guiding is based on the reflection by a thin layer. Our model includes two core-size independent reflection parameters and shows the universal inverse-cubed core diameter dependence of the modal attenuation of HCFs. It substantially reduces simulation complexity and enables large scale parameter sweeps, which we demonstrate on the example of a HCF with a highly anisotropic metallic nanowire cladding, resembling an indefinite metamaterial at high metal filling fractions. We reveal design rules that allow engineering modal discrimination and show that metamaterial HCFs can principally have low losses at mid-IR wavelengths (< 1 dB/m at 10.6 µm). Our model can be applied to a great variety of HCFs with large core diameters and can be used for advanced HCF design and performance optimization, in particular with regard to dispersion engineering and modal discrimination.

10.
Opt Lett ; 41(22): 5377-5380, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27842136

RESUMO

The marker-free and noninvasive detection of small traces of analytes in aqueous solution using integrated optical resonators is an emerging technique within bioanalytics. Here, we present a single-mode silicon-nitride stadium resonator operating at the red edge of the visible spectrum, showing sensitivities larger than 200 nm/RIU and transmission dips with extinction ratios of more than 15 dB. We introduce a mathematical model that allows analyzing of the resonator sensitivity using the properties of the guided mode only. Large geometric parameter scans using finite element simulations show that optimal sensing conditions are achieved for TM-polarized modes close to the modal cutoff. Due to its compactness and the short operation wavelength, we anticipate applications of our resonator for integrated bioanalytics.

11.
Nanotechnology ; 23(35): 355701, 2012 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-22875740

RESUMO

Magnetic nanoparticles are very useful for various medical applications where each application requires particles with specific magnetic properties. In this paper we describe the modification of the magnetic properties of magnetic multicore nanoparticles (MCNPs) by size dependent fractionation. This classification was carried out by means of asymmetric flow field-flow fractionation (AF4). A clear increase of the particle size with increasing elution time was confirmed by multi-angle laser light scattering coupled to the AF4 system, dynamic light scattering and Brownian diameters determined by magnetorelaxometry. In this way 16 fractions of particles with different hydrodynamic diameters, ranging between around 100 and 500 nm, were obtained. A high reproducibility of the method was confirmed by the comparison of the mean diameters of fractions of several fractionation runs under identical conditions. The hysteresis curves were measured by vibrating sample magnetometry. Starting from a coercivity of 1.41 kA m(-1) for the original MCNPs the coercivity of the particles in the different fractions varied from 0.41 to 3.83 kA m(-1). In our paper it is shown for the first time that fractions obtained from a broad size distributed MCNP fluid classified by AF4 show a strong correlation between hydrodynamic diameter and magnetic properties. Thus we state that AF4 is a suitable technology for reproducible size dependent classification of magnetic multicore nanoparticles suspended as ferrofluids.


Assuntos
Fracionamento por Campo e Fluxo/métodos , Nanopartículas de Magnetita/química , Hidrodinâmica , Peso Molecular , Tamanho da Partícula , Reprodutibilidade dos Testes
12.
Sci Rep ; 12(1): 20920, 2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36463325

RESUMO

The generation of tailored light fields with spatially controlled intensity and phase distribution is essential in many areas of science and application, while creating such patterns remotely has recently defined a key challenge. Here, we present a fiber-compatible concept for the remote generation of complex multi-foci three-dimensional intensity patterns with adjusted relative phases between individual foci. By extending the well-known Huygens principle, we demonstrate, in simulations and experiments, that our interference-based approach enables controlling of both intensity and phase of individual focal points in an array of spots distributed in all three spatial directions. Holograms were implemented using 3D nano-printing on planar substrates and optical fibers, showing excellent agreement between design and implemented structures. In addition to planar substrates, holograms were also generated on modified single-mode fibers, creating intensity distributions consisting of about 200 individual foci distributed over multiple image planes. The presented scheme yields an innovative pathway for phase-controlled 3D digital holography over remote distances, yielding an enormous potential application in fields such as quantum technology, life sciences, bioanalytics and telecommunications. Overall, all fields requiring precise excitation of higher-order optical resonances, including nanophotonics, fiber optics and waveguide technology, will benefit from the concept.

13.
ACS Photonics ; 9(9): 3012-3024, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36164483

RESUMO

Due to their unique capabilities, hollow-core waveguides are playing an increasingly important role, especially in meeting the growing demand for integrated and low-cost photonic devices and sensors. Here, we present the antiresonant hollow-core microgap waveguide as a platform for the on-chip investigation of light-gas interaction over centimeter-long distances. The design consists of hollow-core segments separated by gaps that allow external access to the core region, while samples with lengths up to 5 cm were realized on silicon chips through 3D-nanoprinting using two-photon absorption based direct laser writing. The agreement of mathematical models, numerical simulations and experiments illustrates the importance of the antiresonance effect in that context. Our study shows the modal loss, the effect of gap size and the spectral tuning potential, with highlights including extremely broadband transmission windows (>200 nm), very high contrast resonance (>60 dB), exceptionally high structural openness factor (18%) and spectral control by nanoprinting (control over dimensions with step sizes (i.e., increments) of 60 nm). The application potential was demonstrated in the context of laser scanning absorption spectroscopy of ammonia, showing diffusion speeds comparable to bulk diffusion and a low detection limit. Due to these unique properties, application of this platform can be anticipated in a variety of spectroscopy-related fields, including bioanalytics, environmental sciences, and life sciences.

14.
Nanotechnology ; 22(26): 265102, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21576784

RESUMO

When using magnetic nanoparticles as a heating source for magnetic particle hyperthermia it is of particular interest to know if the particles are free to move in the interstitial fluid or are fixed to the tumour tissue. The immobilization state determines the relaxation behaviour of the administered particles and thus their specific heating power. To investigate this behaviour, magnetic multicore nanoparticles were injected into experimentally grown tumours in mice and magnetic heating treatment was carried out in an alternating magnetic field (H = 25 kA m(-1), f = 400 kHz). The tested particles were well suited for magnetic heating treatment as they heated a tumour of about 100 mg by about 22 K within the first 60 s. Upon sacrifice, histological tumour examination showed that the particles form spots in the tissue with a mainly homogeneous particle distribution in these spots. The magnetic ex vivo characterization of the removed tumour tissue gave clear evidence for the immobilization of the particles in the tumour tissue because the particles in the tumour showed the same magnetic behaviour as immobilized particles. Therefore, the particles are not able to rotate and a temperature increase due to Brown relaxation can be neglected. To accurately estimate the heating potential of magnetic materials, the respective environments influencing the nanoparticle mobility status have to be taken into account.


Assuntos
Hipertermia Induzida , Magnetismo , Nanopartículas/química , Neoplasias/terapia , Animais , Linhagem Celular Tumoral , Camundongos , Nanopartículas/ultraestrutura , Neoplasias/diagnóstico por imagem , Neoplasias/cirurgia , Radiografia , Coloração e Rotulagem , Temperatura
15.
Chemphyschem ; 11(9): 1918-24, 2010 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-20401896

RESUMO

In general, the electromagnetic mechanism is understood as the strongest contribution to the overall surface-enhanced Raman spectroscopy (SERS) enhancement. Due to the excitation of surface plasmons, a strong electromagnetic field is induced at the interfaces of a metallic nanoparticle leading to a drastic enhancement of the Raman scattering cross-section. Furthermore, the Raman scattered light expierences an emission enhancement due to the plasmon resonances of the nanoantennas. Herein, this second part of the electromagnetic enhancement phenomenon is investigated for different Raman bands of crystal violet by utilizing the anisotropic plasmonic character of gold nanorhomb SERS arrays. We aim at evaluating the effects of localized and propagating surface plasmon polariton modes as well as their combination on the scattered SERS intensity. From that point of view, design and fabrication strategies towards the fabrication of SERS arrays for excitation wavelengths in the visible and near-infrared (NIR) spectral region can be given, also using a double-resonant electromagnetic enhancement.

16.
Nanotechnology ; 21(1): 015706, 2010 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-19946160

RESUMO

The derivation of the optimum mean diameter of magnetic nanoparticles (MNP) for hyperthermia as a tumour therapy in the literature is commonly reduced to application of the Néel relaxation model. Serious restrictions of this model for MNP for hyperthermia are discussed and a way is outlined to a more comprehensive model including hysteresis.


Assuntos
Hipertermia Induzida , Magnetismo , Modelos Químicos , Nanopartículas/química , Anisotropia , Tamanho da Partícula , Reprodutibilidade dos Testes , Análise Espectral
17.
Phys Med Biol ; 54(17): 5109-21, 2009 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-19661569

RESUMO

The aim of this study was to characterize the behaviour of cisplatin adsorbed magnetic nanoparticles (cis-MNPs) for minimal invasive cancer treatments in preliminary in vitro investigations. Cisplatin was adsorbed to magnetic nanoparticles (MNPs) by simple incubation. For stability determinations, cis-MNPs were incubated in dH(2)O, phosphate-buffered saline (PBS) and fetal calf serum (FCS) at 4-121 degrees C up to 20 weeks. Hydrodynamic diameters were measured using laser diffraction. The extent of cisplatin linkage was determined by atomic absorption spectrometry. The magnetite core size was assessed by vibrating sample magnetometry and transmission electron microscopy. The specific loss power (SLP) was measured in an alternating magnetic field. Our results showed that a maximum of 10.3 +/- 1.6 (dH(2)O), 10 +/- 1.6 (PBS) and 13.4 +/- 2.2 (FCS) mg cisplatin g(-1) Fe could be adsorbed to MNPs. With hyperthermal (42 degrees C) or thermal ablative (60 degrees C) temperatures, used for therapeutic approaches, cisplatin did not desorb from cis-MNPs in dH(2)O during incubation times of 180 or 30 min, respectively. In PBS and FCS, cisplatin amounts adsorbed to MNPs decreased rapidly to approximately 50% and 25% at these temperatures. This cisplatin release will be necessary for successful chemotherapeutic activity and should increase the therapeutic effect of magnetic heating treatment in medicinal applications. The hydrodynamic diameters of MNPs or cis-MNPs were around 70 nm and magnetization data showed superparamagnetic behaviour. The obtained mean core diameter was around 12 nm. The SLP of the sample was calculated to be 75.5 +/- 1.6 W g(-1). In conclusion, cis-MNPs exhibit advantageous features for a facilitated desorption of cisplatin in biological media and the heating potential is adequate for hyperthermic treatments. Therefore, even though further detailed investigations are still necessary, tentative use in local tumour therapies aiming at a specific chemotherapeutic release in combination with magnetic heating seems to be feasible in the long term.


Assuntos
Antineoplásicos/química , Cisplatino/química , Portadores de Fármacos/química , Compostos Férricos/química , Nanopartículas/química , Adsorção , Antineoplásicos/metabolismo , Antineoplásicos/uso terapêutico , Cisplatino/metabolismo , Cisplatino/uso terapêutico , DNA/metabolismo , Temperatura Alta , Magnetismo , Tamanho da Partícula , Amido/química , Fatores de Tempo
18.
J Magn Magn Mater ; 321(13): 1947-1950, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26405373

RESUMO

Using the thermal decomposition of organometallics method we have synthesized high-quality, iron oxide nanoparticles of tailorable size up to ~15nm and transferred them to a water phase by coating with a biocompatible polymer. The magnetic behavior of these particles was measured and fit to a log-normal distribution using the Chantrell method and their polydispersity was confirmed to be very narrow. By performing calorimetry measurements with these monodisperse particles we have unambiguously demonstrated, for the first time, that at a given frequency, heating rates of superparamagnetic particles are dependent on particle size, in agreement with earlier theoretical predictions.

19.
Sci Rep ; 9(1): 2873, 2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30814665

RESUMO

Due to unique properties and great design flexibilities, Fano resonances represent one of the most promising optical features mediated by metallic nanostructures, while the excitation of some Fano modes is impossible due to symmetry reasons. The aim of this work is to show that dense lattice arrangements can have a profound impact on the optical properties of nanostructures and, in particular, can enable the excitation of otherwise dark modes. Here, we demonstrate this concept using the example of rectangular arrays of symmetric trimers packed so densely that the coupling between neighbouring unit cells imposes a symmetry break, enabling the excitation of magnetic Fano resonances. We found that in experiments as well as in simulations, electric and magnetic Fano resonances can be simultaneously formed in cases where the inter-trimer distances are sufficiently small. By analysing the transition from an isolated trimer mode into a regime of strong near-field coupling, we show that by modifying the rectangular unit cell lengths due to the symmetry mismatch between lattice and trimer, two types of Fano resonances can be found, especially magnetic Fano resonances with loop-type magnetic field distributions within the centre of each trimer, which can be either enhanced or suppressed. In addition, the influence of the refractive index environment was measured, showing sensitivity values of approximately 300 nm/RIU. Our work provides fundamental insights into the interaction of the lattice and nanostructure response and paves the way towards the observation of novel optical excitations.

20.
Sci Rep ; 8(1): 1743, 2018 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-29367631

RESUMO

A correction to this article has been published and is linked from the HTML version of this paper. The error has not been fixed in the paper.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA