Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Breast Cancer Res ; 22(1): 51, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32430040

RESUMO

BACKGROUND: The tamoxifen metabolite, Z-endoxifen, demonstrated promising antitumor activity in endocrine-resistant estrogen receptor-positive (ER+) breast cancer. We compared the antitumor activity of Z-endoxifen with tamoxifen and letrozole in the letrozole-sensitive MCF7 aromatase expressing model (MCF7AC1), as well as with tamoxifen, fulvestrant, exemestane, and exemestane plus everolimus in a letrozole-resistant MCF7 model (MCF7LR). METHODS: MCF7AC1 tumor-bearing mice were randomized to control (no drug), letrozole (10 µg/day), tamoxifen (500 µg/day), or Z-endoxifen (25 and 75 mg/kg). Treatment in the letrozole arm was continued until resistance developed. MCF7LR tumor-bearing mice were then randomized to Z-endoxifen (50 mg/kg) or tamoxifen for 4 weeks and tumors harvested for microarray and immunohistochemistry analysis. The antitumor activity of Z-endoxifen in the MCF7LR tumors was further compared in a second in vivo study with exemestane, exemestane plus everolimus, and fulvestrant. RESULTS: In the MCF7AC1 tumors, both Z-endoxifen doses were significantly superior to control and tamoxifen in reducing tumor volumes at 4 weeks. Additionally, the 75 mg/kg Z-endoxifen dose was additionally superior to letrozole. Prolonged letrozole exposure resulted in resistance at 25 weeks. In MCF7LR tumor-bearing mice, Z-endoxifen significantly reduced tumor volumes compared to tamoxifen, letrozole, and exemestane, with no significant differences compared to exemestane plus everolimus and fulvestrant. Additionally, compared to tamoxifen, Z-endoxifen markedly inhibited ERα target genes, Ki67 and Akt expression in vivo. CONCLUSION: In endocrine-sensitive and letrozole-resistant breast tumors, Z-endoxifen results in robust antitumor and antiestrogenic activity compared to tamoxifen and aromatase inhibitor monotherapy. These data support the ongoing development of Z-endoxifen.


Assuntos
Inibidores da Aromatase/farmacologia , Neoplasias da Mama/tratamento farmacológico , Receptores de Estrogênio/metabolismo , Tamoxifeno/análogos & derivados , Animais , Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Letrozol/farmacologia , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , Tamoxifeno/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Clin Cancer Res ; 26(1): 159-170, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31558472

RESUMO

PURPOSE: We hypothesized that integrated analysis of cancer types from different lineages would reveal novel molecularly defined subgroups with unique therapeutic vulnerabilities. On the basis of the molecular similarities between subgroups of breast and ovarian cancers, we analyzed these cancers as a single cohort to test our hypothesis. EXPERIMENTAL DESIGN: Identification of transcriptional subgroups of cancers and drug sensitivity analyses were performed using mined data. Cell line sensitivity to Hsp90 inhibitors (Hsp90i) was tested in vitro. The ability of a transcriptional signature to predict Hsp90i sensitivity was validated using cell lines, and cell line- and patient-derived xenograft (PDX) models. Mechanisms of Hsp90i sensitivity were uncovered using immunoblot and RNAi. RESULTS: Transcriptomic analyses of breast and ovarian cancer cell lines uncovered two mixed subgroups comprised primarily of triple-negative breast and multiple ovarian cancer subtypes. Drug sensitivity analyses revealed that cells of one mixed subgroup are significantly more sensitive to Hsp90i compared with cells from all other cancer lineages evaluated. A gene expression classifier was generated that predicted Hsp90i sensitivity in vitro, and in cell line- and PDXs. Cells from the Hsp90i-sensitive subgroup underwent apoptosis mediated by Hsp90i-induced upregulation of the proapoptotic proteins Bim and PUMA. CONCLUSIONS: Our findings identify Hsp90i as a potential therapeutic strategy for a transcriptionally defined subgroup of ovarian and breast cancers. This study demonstrates that gene expression profiles may be useful to identify therapeutic vulnerabilities in tumor types with limited targetable genetic alterations, and to identify molecularly definable cancer subgroups that transcend lineage.


Assuntos
Antineoplásicos/farmacologia , Biomarcadores Tumorais/genética , Neoplasias da Mama/tratamento farmacológico , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Apoptose , Neoplasias da Mama/classificação , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Endogâmicos NOD , Neoplasias de Mama Triplo Negativas/classificação , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA