Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Pharm ; 20(9): 4676-4686, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37607353

RESUMO

In the present article, we describe a multimodal radiobioconjugate that contains a chemotherapeutic agent (doxorubicin, DOX), a ß-emitter (198Au), and a guiding vector (trastuzumab, Tmab) for targeted therapy of cancers overexpressing HER2 receptors. To achieve this goal, radioactive gold nanoparticles (198AuNPs) with a mean diameter of 30 nm were synthesized and coated with a poly(ethylene glycol) (PEG) linker conjugated to DOX and monoclonal antibody (Tmab) via peptide bond formation. In vitro experiments demonstrated a high affinity of the radiobioconjugate to HER2 receptors and cell internalization. Cytotoxicity experiments performed using the MTS assay showed a significant decrease in the viability of SKOV-3 cells. A synergistic cytotoxic effect due to the simultaneous presence of DOX and 198Au was revealed after 48 h of treatment with 2.5 MBq/mL. Flow cytometry analysis indicated that DOX-198AuNPs-Tmab mainly induced cell cycle arrest in the G2/M phase and late apoptosis. Dose-dependent additive and synergistic effects of the radiobioconjugate were also shown in spheroid models. Ex vivo biodistribution experiments were performed in SKOV-3 tumor-bearing mice, investigating different distributions of the 198AuNPs-DOX and DOX-198AuNPs-Tmab after intravenous (i.v.) and intratumoral (i.t.) administration. Finally, in vivo therapeutic efficacy studies on the same animal model demonstrated very promising results, as they showed a significant tumor growth arrest up to 28 days following a single intratumoral injection of 10 MBq. Therefore, the proposed multimodal radiobioconjugate shows great potential for the local treatment of HER2+ cancers.


Assuntos
Nanopartículas Metálicas , Neoplasias , Animais , Camundongos , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico , Ouro , Distribuição Tecidual , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico
2.
Int J Mol Sci ; 24(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36982357

RESUMO

This study was performed to synthesize a radiopharmaceutical designed for multimodal hepatocellular carcinoma (HCC) treatment involving radionuclide therapy and magnetic hyperthermia. To achieve this goal, the superparamagnetic iron oxide (magnetite) nanoparticles (SPIONs) were covered with a layer of radioactive gold (198Au) creating core-shell nanoparticles (SPION@Au). The synthesized SPION@Au nanoparticles exhibited superparamagnetic properties with a saturation magnetization of 50 emu/g, which is lower than reported for uncoated SPIONs (83 emu/g). Nevertheless, the SPION@Au core-shell nanoparticles showed a sufficiently high saturation magnetization value which allows them to reach a temperature of 43 °C at a magnetic field frequency of 386 kHz. The cytotoxic effect of nonradioactive and radioactive SPION@Au-polyethylene glycol (PEG) bioconjugates was carried out by treating HepG2 cells with various concentrations (1.25-100.00 µg/mL) of the compound and radioactivity in range of 1.25-20 MBq/mL. The moderate cytotoxic effect of nonradioactive SPION@Au-PEG bioconjugates on HepG2 was observed. The cytotoxic effect associated with the ß- radiation emitted by 198Au was much greater and already reaches a cell survival fraction below 8% for 2.5 MBq/mL of radioactivity after 72 h. Thus, the killing of HepG2 cells in HCC therapy should be possible due to the combination of the heat-generating properties of the SPION-198Au-PEG conjugates and the radiotoxicity of the radiation emitted by 198Au.


Assuntos
Carcinoma Hepatocelular , Hipertermia Induzida , Neoplasias Hepáticas , Nanopartículas de Magnetita , Humanos , Carcinoma Hepatocelular/radioterapia , Ouro , Neoplasias Hepáticas/terapia , Nanopartículas de Magnetita/uso terapêutico , Nanopartículas Magnéticas de Óxido de Ferro , Hipertermia , Fenômenos Magnéticos
3.
Molecules ; 28(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36985421

RESUMO

Recently, targeted nanoparticles (NPs) have attracted much attention in cancer treatment due to their high potential as carriers for drug delivery. In this article, we present a novel bioconjugate (DOX-AuNPs-Tmab) consisting of gold nanoparticles (AuNPs, 30 nm) attached to chemotherapeutic agent doxorubicin (DOX) and a monoclonal antibody, trastuzumab (Tmab), which exhibited specific binding to HER2 receptors. The size and shape of synthesized AuNPs, as well as their surface modification, were analyzed by the TEM (transmission electron microscopy) and DLS (dynamic light scattering) methods. Biological studies were performed on the SKOV-3 cell line (HER2+) and showed high specificity of binding to the receptors and internalization capabilities, whereas MDA-MB-231 cells (HER2-) did not. Cytotoxicity experiments revealed a decrease in the metabolic activity of cancer cells and surface area reduction of spheroids treated with DOX-AuNPs-Tmab. The bioconjugate induced mainly cell cycle G2/M-phase arrest and late apoptosis. Our results suggest that DOX-AuNPs-Tmab has great potential for targeted therapy of HER2-positive tumors.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Neoplasias , Humanos , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico , Ouro , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral
4.
Mol Pharm ; 19(8): 2818-2831, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35849547

RESUMO

Here, we propose tailored lipid liquid-crystalline carriers (cubosomes), which incorporate an anticancer drug (doxorubicin) and complexed short-lived α-emitter (bismuth-213), as a strategy to obtain more effective action toward the cancer cells. Cubosomes were formulated with doxorubicin (DOX) and an amphiphilic ligand (DOTAGA-OA), which forms stable complexes with 213Bi radionuclide. The behavior of DOX incorporated into the carrier together with the chelating agent was investigated, and the drug liberation profile was determined. The experiments revealed that the presence of the DOTAGA-OA ligand affects the activity of DOX when they are incorporated into the same carrier. This unexpected influence was explained based on the results of release studies, which proved the contribution of electrostatics in molecular interactions between the positively charged DOX and negatively charged DOTAGA-OA in acidic and neutral solutions. A significant decrease in the viability of HeLa cancer cells was achieved using sequential cell exposure: first to the radiolabeled cubosomes containing 213Bi complex and next to DOX-doped cubosomes. Therefore, the sequential procedure for the delivery of both drugs encapsulated in cubosomes is suggested for further biological and in vivo studies.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Doxorrubicina/química , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Humanos , Ligantes , Lipídeos , Nanopartículas/química , Tamanho da Partícula
5.
Int J Mol Sci ; 23(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36499101

RESUMO

Overcoming the limitations for efficient and selective drug delivery is one of the most challenging obstacles for newly designed anticancer agents. In this study, we present two types of platinum-based nanoparticles (NP), ultrasmall 2 nm PtNPs and core-shell 30 nm Au@Pt, which can be highly cytotoxic in an oxidative environment and remain biologically inactive in cells with lower oxidative status. Our research highlighted the differences in platinum nanoparticle-induced chemotoxicity and is the first study examining its mechanism as a substantial aspect of Au@Pt/PtNPs biological activity. Selectively induced oxidative stress was found to be a primary trigger of NPs' toxicity. Significant differences between Au@Pt and PtNPs were observed especially during 24 h treatment, due to successful intranuclear PtNPs location (~13% of internalized fraction). Reactive oxygen species (ROS)-level induced from both NPs types were similar, while reduction of reduced glutathione (GSH) intracellular content was stronger after treatment with PtNPs. Any biological activity was found in HER2+ breast cancer cells, which have only slightly increased oxidative status. Platinum-containing nanoparticles are an interesting tool for the improvement of selectivity in anticancer therapies against hepatocellular carcinoma (HCC). Due to intranuclear uptake, 2 nm PtNPs seems to be more promising for further research for HCC therapy.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanopartículas Metálicas , Nanopartículas , Humanos , Platina/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Nanopartículas Metálicas/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Espécies Reativas de Oxigênio , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
6.
Nanoscale Adv ; 5(12): 3293-3303, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37325536

RESUMO

Convenient therapeutic protocols against hepatocellular carcinoma (HCC) exhibit low treatment effectiveness, especially in the context of long-term effects, which is primarily related to late diagnosis and high tumor heterogeneity. Current trends in medicine concern combined therapy to achieve new powerful tools against the most aggressive diseases. When designing modern, multimodal therapeutics, it is necessary to look for alternative routes of specific drug delivery to the cell, its selective (with respect to the tumor) activity and multidirectional action, enhancing the therapeutic effect. Targeting the physiology of the tumor makes it possible to take advantage of certain characteristic properties of the tumor that differentiate it from other cells. In the present paper we designed for the first time iodine-125 labeled platinum nanoparticles for combined "chemo-Auger electron" therapy of hepatocellular carcinoma. High selectivity achieved by targeting the tumor microenvironment of these cells was associated with effective radionuclide desorption in the presence of H2O2. The therapeutic effect was found to be correlated with cell damage at various molecular levels including DNA DSBs and was observed in a dose-dependent manner. A three-dimensional tumor spheroid revealed successful radioconjugate anticancer activity with a significant treatment response. A possible concept for clinical application after prior in vivo trials may be achieved via transarterial injection of micrometer range lipiodol emulsions with encapsulated 125I-NP. Ethiodized oil gives several advantages especially for HCC treatment; thus bearing in mind a suitable particle size for embolization, the obtained results highlight the exciting prospects for the development of PtNP-based combined therapy.

7.
EJNMMI Radiopharm Chem ; 8(1): 26, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821747

RESUMO

BACKGROUND: In radionuclide therapy, to enhance therapeutic efficacy, an intriguing alternative is to ensure the simultaneous implementation of low- and high-LET radiation emitted from a one radionuclide. In the present study, we introduce the concept of utilizing 109Pd (T1/2 = 13.7 h) in the form of a 109Pd/109mAg in vivo generator. In this system, 109Pd emits beta particles of medium energy, while 109mAg releases a cascade of conversion and Auger electrons. 109Pd was utilized in the form of 15 nm gold nanoparticles, which were coated with a monolayer of 109Pd. In this system, the 109Pd atoms are on the surface of the nanoparticle, while the 109mAg atoms generated in the decay reaction possess the capability for unhindered emission of Auger electrons. RESULTS: 109Pd, obtained through neutron irradiation of natural palladium, was deposited onto 15-nm gold nanoparticles, exceeding a efficiency rate of 95%. In contrast to previously published data on in vivo generators based on chelators, where the daughter radionuclide diffuses away from the molecules, daughter radionuclide 109mAg remains on the surface of gold nanoparticles after the decay of 109Pd. To obtain a radiobioconjugate with an affinity for HER2 receptors, polyethylene glycol chains and the monoclonal antibody trastuzumab were attached to the Au@Pd nanoparticles. The synthesized bioconjugate contained an average of 9.5 trastuzumab molecules per one nanoparticle. In vitro cell studies indicated specific binding of the Au@109Pd-PEG-trastuzumab radiobioconjugate to the HER2 receptor on SKOV-3 cells, resulting in 90% internalization. Confocal images illustrated the accumulation of Au@109Pd-PEG-trastuzumab in the perinuclear area surrounding the cell nucleus. Despite the lack of nuclear localization, which is necessary to achieve an effective cytotoxic effect of Auger electrons, a substantial cytotoxic effect, significantly greater than that of pure ß- and pure Auger electron emitters was observed. We hypothesize that in the studied system, the cytotoxic effect of the Auger electrons could have also occurred through the damage to the cell's nuclear membrane by Auger electrons emitted from nanoparticles accumulated in the perinuclear area. CONCLUSION: The obtained results show that trastuzumab-functionalized 109Pd-labeled nanoparticles can be suitable for the application in combined ß--Auger electron targeted radionuclide therapy. Due to both components decay (ß- and conversion/Auger electrons), the 109Pd/109mAg in vivo generator presents unique potential in this field. Despite the lack of nuclear localization, which is highly required for efficient Auger electron therapy, an adequate cytotoxic effect was attained.

8.
Pharmaceutics ; 15(3)2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36986710

RESUMO

This study was performed to synthesize multimodal radiopharmaceutical designed for the diagnosis and treatment of prostate cancer. To achieve this goal, superparamagnetic iron oxide (SPIO) nanoparticles were used as a platform for targeting molecule (PSMA-617) and for complexation of two scandium radionuclides, 44Sc for PET imaging and 47Sc for radionuclide therapy. TEM and XPS images showed that the Fe3O4 NPs have a uniform cubic shape and a size from 38 to 50 nm. The Fe3O4 core are surrounded by SiO2 and an organic layer. The saturation magnetization of the SPION core was 60 emu/g. However, coating the SPIONs with silica and polyglycerol reduces the magnetization significantly. The obtained bioconjugates were labeled with 44Sc and 47Sc, with a yield higher than 97%. The radiobioconjugate exhibited high affinity and cytotoxicity toward the human prostate cancer LNCaP (PSMA+) cell line, much higher than for PC-3 (PSMA-) cells. High cytotoxicity of the radiobioconjugate was confirmed by radiotoxicity studies on LNCaP 3D spheroids. In addition, the magnetic properties of the radiobioconjugate should allow for its use in guide drug delivery driven by magnetic field gradient.

9.
Pharmaceutics ; 13(4)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33916072

RESUMO

Cancer is one of the most common causes of death worldwide, thus new solutions in anticancer therapies are highly sought after. In this work, superparamagnetic iron oxide nanoparticles (SPIONs) conjugated with anticancer drugs are synthesized and investigated as potential magnetic drug nanocarriers for local drug delivery and mild magnetic hyperthermia. We have obtained a hybrid system loaded with holmium and anticancer drugs and thoroughly studied it with respect to the size, morphology, surface modifications and magnetic properties, and interactions with the model of biological membranes, cytotoxicity. We present that nanoparticles having a round shape and size 15 nm are successfully stabilized to avoid their agglomeration and modified with doxorubicin or epirubicin within a controlled way. The number of drugs loaded into the SPIONs was confirmed with thermogravimetry. The hybrid based on SPIONs was investigated in touch with model biological membranes within the Langmuir-Blodgett technique, and results show that modified SPION interacts effectively with them. Results obtained with magnetic hyperthermia and biological studies confirm the promising properties of the hybrid towards future cancer cell treatment.

10.
Nanomaterials (Basel) ; 10(7)2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32668687

RESUMO

Recent advances in the field of nanotechnology application in nuclear medicine offer the promise of better therapeutic options. In recent years, increasing efforts have been made on developing nanoconstructs that can be used as carriers for immobilising alpha (α)-emitters in targeted drug delivery. In this publication, we provide a comprehensive overview of available information on functional nanomaterials for targeted alpha therapy. The first section describes why nanoconstructs are used for the synthesis of α-emitting radiopharmaceuticals. Next, we present the synthesis and summarise the recent studies demonstrating therapeutic applications of α-emitting labelled radiobioconjugates in targeted therapy. Finally, future prospects and the emerging possibility of therapeutic application of radiolabelled nanomaterials are discussed.

11.
Nanomaterials (Basel) ; 10(11)2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33207760

RESUMO

Lipid liquid-crystalline nanoparticles (cubosomes) were used for the first time as a dual-modality drug delivery system for internal radiotherapy combined with chemotherapy. Monoolein (GMO)-based cubosomes were prepared by loading the anticancer drug, doxorubicin and a commonly used radionuclide, low-energy beta (ß-)-emitter, 177Lu. The radionuclide was complexed with a long chain derivative of DOTAGA (DOTAGA-OA). The DOTAGA headgroup of the chelator was exposed to the aqueous channels of the cubosomes, while, concerning OA, the hydrophobic tail was embedded in the nonpolar region of the lipid bilayer matrix, placing the radioactive dopant in a stable manner inside the cubosome. The cubosomes containing doxorubicin and the radionuclide complex increased the cytotoxicity measured by the viability of the treated HeLa cells compared with the effect of single-drug cubosomes containing either the DOX DOTAGA-OA or DOTAGA-OA-177Lu complex. Multifunctional lipidic nanoparticles encapsulating the chemotherapeutic agent together with appropriately complexed (ß-) radionuclide are proposed as a potential strategy for effective local therapy of various cancers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA