Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biol Reprod ; 110(4): 772-781, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38195246

RESUMO

Cisplatin, a platinum-containing alkylating agent, is used in the treatment of various tumors owing to its potent antitumor activity. However, it causes permanent and adverse effects, particularly hearing loss and depletion of ovarian reserve. Until recently, there were no clinically available protective agents to mitigate the adverse side effects of cisplatin-induced cytotoxicity. In 2022, sodium thiosulfate (STS) was approved by the Food and Drug Administration for mitigating hearing loss in children and adolescents undergoing cisplatin treatment. Consequently, our investigation aimed to determine if STS could protect ovarian reserve against cisplatin-induced gonadotoxicity. In an ex vivo culture, the cisplatin-only group exhibited a loss of primordial follicles, while post-STS administration after cisplatin exposure effectively protected primordial follicles. However, when post-STS was administrated either 6 or 4 h after cisplatin exposure, it did not confer protection against cisplatin-induced gonadotoxicity in postnatal day 7 or adolescent mouse models. Immunofluorescence assays using γH2AX and cPARP revealed that oocytes within primordial follicles exhibited DNA damage after cisplatin exposure, irrespective of post-STS administration. This underscores the rapid and heightened sensitivity of oocytes to gonadotoxicity. In addition, oocytes demonstrated an increased expression of pCHK2 rather than pERK, suggesting that the pathway leading to oocyte death differs from the pathway observed in the inner ear cell death following cisplatin exposure. These results imply that while the administration of STS after cisplatin is highly beneficial in preventing hearing loss, it does not confer a protective effect on the ovaries in mouse models.


Assuntos
Antineoplásicos , Perda Auditiva , Reserva Ovariana , Tiossulfatos , Camundongos , Criança , Feminino , Animais , Adolescente , Humanos , Cisplatino/toxicidade , Antineoplásicos/toxicidade , Perda Auditiva/induzido quimicamente
2.
Biol Reprod ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38900906

RESUMO

The Multispecies Ovary Tissue Histology Electronic Repository (MOTHER) is a publicly accessible repository of ovary histology images. MOTHER includes hundreds of images from nonhuman primates, as well as ovary histology images from an expanding range of other species. Along with an image, MOTHER provides metadata about the image, and for selected species, follicle identification annotations. Ongoing work includes assisting scientists with contributing their histology images, creation of manual and automated (via machine learning) processing pipelines to identify and count ovarian follicles in different stages of development, and the incorporation of that data into the MOTHER database (MOTHER-DB). MOTHER will be a critical data repository storing and disseminating high-value histology images that are essential for research into ovarian function, fertility, and intra-species variability.

3.
Am J Obstet Gynecol ; 228(3): 270-275.e4, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36191605

RESUMO

The ovaries are the female gonads that are crucial for reproduction, steroid production, and overall health. Historically, the ovary was broadly divided into regions defined as the cortex, medulla, and hilum. This current nomenclature lacks specificity and fails to consider the significant anatomic variations in the ovary. Recent technological advances in imaging modalities and high-resolution omic analyses have brought about the need for revision of the existing definitions, which will facilitate the integration of generated data and enable the characterization of organ subanatomy and function at the cellular level. The creation of these high-resolution multimodal maps of the ovary will enhance collaboration and communication among disciplines and between clinicians and researchers. Beginning in March 2021, the Pediatric and Adolescent Gynecology Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development invited subject-matter experts to participate in a series of workshops and meetings to standardize ovarian nomenclature and define the organ's features. The goal was to develop a spatially defined and semantically consistent terminology of the ovary to support collaborative, team science-based endeavors aimed at generating reference atlases of the human ovary. The group recommended a standardized, 3-dimensional description of the ovary and an ontological approach to the subanatomy of the ovary and definition of follicles. This new greater precision in nomenclature and mapping will better reflect the ovary's heterogeneous composition and function, support the standardization of tissue collection, facilitate functional analyses, and enable clinical and research collaborations. The conceptualization process and outcomes of the effort, which spanned the better part of 2021 and early 2022, are introduced in this article. The institute and the workshop participants encourage researchers and clinicians to adopt the new systems in their everyday work to advance the overarching goal of improving human reproductive health.


Assuntos
Ginecologia , Ovário , Adolescente , Humanos , Feminino , Criança , Ovário/diagnóstico por imagem , Pelve
4.
Biol Reprod ; 106(2): 291-315, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-34962509

RESUMO

In vitro follicle development (IVFD) is an adequate model to obtain basic knowledge of folliculogenesis and provides a tool for ovarian toxicity screening. IVFD yielding competent oocytes may also offer an option for fertility and species preservation. To promote follicle growth and oocyte maturation in vitro, various culture systems are utilized for IVFD in rodents, domestic animals, wild animals, nonhuman primates, and humans. Follicle culture conditions have been improved by optimizing gonadotropin levels, regulatory factors, nutrient supplements, oxygen concentration, and culture matrices. This review summarizes quality assessment of oocytes generated from in vitro-developed antral follicles from the preantral stage, including oocyte epigenetic and genetic profile, cytoplasmic and nuclear maturation, preimplantation embryonic development following in vitro fertilization, as well as pregnancy and live offspring after embryo transfer. The limitations of oocyte quality evaluation following IVFD and the gaps in our knowledge of IVFD to support proper oocyte development are also discussed. The information may advance our understanding of the requirements for IVFD, with a goal of producing competent oocytes with genetic integrity to sustain embryonic development resulting in healthy offspring.


Assuntos
Oócitos , Folículo Ovariano , Animais , Desenvolvimento Embrionário , Feminino , Fertilização in vitro , Oogênese , Gravidez
5.
Biol Reprod ; 104(5): 1058-1070, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33524104

RESUMO

Oocytes are highly radiosensitive, so agents that prevent radiation-induced ovarian follicle destruction are important fertility preservation strategies. A previous study in rhesus macaques demonstrated that ovarian treatment with antiapoptotic agents, sphingosine-1-phosphate (S1P) and FTY720, its long-acting mimetic, preserved follicles following a single dose of 15 Gy X-ray radiation, and live offspring were obtained from FTY720-treated animals. However, it is unknown whether these antiapoptotic agents also protected the ovarian stroma from late effects of radiation, including vascular damage and fibrosis. Using ovarian histological sections from this study, we evaluated the vasculature and extracellular matrix in the following cohorts: vehicle + sham irradiation, vehicle + irradiation (OXI), S1P + irradiation (S1P), and FTY720 + irradiation (FTY720). One ovary from each animal was harvested prior to radiation whereas the contralateral ovary was harvested 10 months post-treatment. We assessed vasculature by immunohistochemistry with a PECAM1 antibody, hyaluronan by a hyaluronan binding protein assay, and collagen by picrosirius red and Masson's trichrome staining. Disorganized vessels were observed in the medulla in the OXI and S1P cohorts relative to the sham, but the vasculature in the FTY720 cohort appeared intact, which may partially explain fertoprotection. There were no differences in the hyaluronan matrix among the cohorts, but there was thickening of the tunica albuginea and fibrosis in the OXI cohort relative to the sham, which was not mitigated by either S1P or FTY720 treatment. Thus, the fertoprotective properties of S1P and FTY720 may be limited given their inability to protect the ovarian stroma against the late effects of radiation-induced fibrosis.


Assuntos
Fibrose/tratamento farmacológico , Cloridrato de Fingolimode/farmacologia , Imunossupressores/farmacologia , Lisofosfolipídeos/farmacologia , Doenças Ovarianas/tratamento farmacológico , Moduladores do Receptor de Esfingosina 1 Fosfato/farmacologia , Esfingosina/análogos & derivados , Animais , Feminino , Fibrose/etiologia , Macaca mulatta , Doenças Ovarianas/etiologia , Esfingosina/farmacologia
6.
Cryobiology ; 94: 66-72, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32339491

RESUMO

Type and concentration of cryoprotective agents (CPAs) are important factors which influence the likelihood of a successful ovarian tissue vitrification outcome. In an attempt to address this factor, the present study was conducted to evaluate the impacts of different synthetic polymers (Supercool X-1000, Supercool Z-1000 and PVP K-12) on vitrification of bovine ovarian tissue. From each ovarian pair, fragments were recovered and immediately fixed for analysis (fresh control) or submitted to vitrification, either or not followed by in vitro culture for one or five days. Vitrification was performed using the ovarian tissue cryosystem (OTC) system. The ovarian tissues were intended for histological and viability analysis [Reactive oxygen species (ROS) production and degenerate cells assay (Ethidium homodimer-1)], as well as immunolocalization of AQP3 and AQP9 were measured. The results showed that during almost all the periods after warming, in treatment groups which contain polymer (X-1000, Z-1000 and PVP), the percentage of morphologically normal follicles was the highest in the X-1000 samples. Furthermore, post-thawed X-1000 group revealed stronger labeling for AQP9 in primordial and transitional follicles, when compared with others. However, morphology after cryopreservation did not correlate with follicle viability and function where the levels of degeneration and tissue damage of PVP K-12 group were lower in comparison with X-1000 group and only in PVP K-12 group, ROS level was similar to that of the fresh control group. We believe that in addition to permeating CPAs, the addition of one (Supercool X-1000) or maybe a combination (Supercool X-1000 and PVP K-12) of non-permeating polymers could be useful to improve the outcome for vitrified bovine ovarian tissue.


Assuntos
Criopreservação/métodos , Crioprotetores/farmacologia , Ovário , Polímeros/farmacologia , Vitrificação/efeitos dos fármacos , Animais , Bovinos , Feminino
7.
J Assist Reprod Genet ; 36(3): 395-402, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30467617

RESUMO

The aging-related decline in fertility is an increasingly pressing medical and economic issue in modern society where women are delaying family building. Increasingly sophisticated, costly, and often increasingly invasive, assisted reproductive clinical protocols and laboratory technologies (ART) have helped many older women achieve their reproductive goals. Current ART procedures have not been able to address the fundamental problem of oocyte aging, the increased rate of egg aneuploidy, and the decline of developmental potential of the eggs. Oocyte maturation, which is triggered by luteinizing hormone (LH) in vivo or by injection of human chorionic gonadotropin (hCG) in an in vitro fertilization (IVF) clinic, is the critical stage at which the majority of egg aneuploidies arise and when much of an egg's developmental potential is established. Our proposed strategy focuses on improving egg quality in older women by restoring a robust oocyte maturation process. We have identified putrescine deficiency as one of the causes of poor egg quality in an aged mouse model. Putrescine is a biogenic polyamine naturally produced in peri-ovulatory ovaries. Peri-ovulatory putrescine supplementation has reduced egg aneuploidy, improved embryo quality, and reduced miscarriage rates in aged mice. In this paper, we review the literature on putrescine, its occurrence and physiology in living organisms, and its unique role in oocyte maturation. Preliminary human data demonstrates that there is a maternal aging-related deficiency in ovarian ornithine decarboxylase (ODC), the enzyme responsible for putrescine production. We argue that peri-ovulatory putrescine supplementation holds great promise as a natural and effective therapy for infertility in women of advanced maternal age, applicable in natural conception and in combination with current ART therapies.


Assuntos
Infertilidade Feminina/tratamento farmacológico , Oogênese/efeitos dos fármacos , Ovário/efeitos dos fármacos , Putrescina/metabolismo , Aborto Espontâneo , Adulto , Envelhecimento/efeitos dos fármacos , Envelhecimento/genética , Feminino , Fertilização in vitro/métodos , Humanos , Infertilidade Feminina/genética , Pessoa de Meia-Idade , Oócitos/efeitos dos fármacos , Oócitos/crescimento & desenvolvimento , Oogênese/genética , Ornitina Descarboxilase/deficiência , Ornitina Descarboxilase/genética , Ovário/crescimento & desenvolvimento , Gravidez , Putrescina/uso terapêutico , Reprodução/efeitos dos fármacos
8.
Biol Reprod ; 109(2): 121-124, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37336787
10.
Future Oncol ; 14(29): 3059-3072, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30474429

RESUMO

Once unimaginable, fertility management is now a nationally established part of cancer care in institutions, from academic centers to community hospitals to private practices. Over the last two decades, advances in medicine and reproductive science have made it possible for men, women and children to be connected with an oncofertility specialist or offered fertility preservation soon after a cancer diagnosis. The Oncofertility Consortium's National Physicians Cooperative is a large-scale effort to engage physicians across disciplines - oncology, urology, obstetrics and gynecology, reproductive endocrinology, and behavioral health - in clinical and research activities to enable significant progress in providing fertility preservation options to children and adults. Here, we review the structure and function of the National Physicians Cooperative and identify next steps.


Assuntos
Preservação da Fertilidade/métodos , Fertilidade/fisiologia , Colaboração Intersetorial , Neoplasias/fisiopatologia , Médicos/organização & administração , Adulto , Antineoplásicos/efeitos adversos , Medicina do Comportamento/organização & administração , Criança , Progressão da Doença , Endocrinologia/métodos , Endocrinologia/organização & administração , Feminino , Fertilidade/efeitos dos fármacos , Ginecologia/métodos , Ginecologia/organização & administração , Humanos , Oncologia/métodos , Oncologia/organização & administração , Neoplasias/complicações , Neoplasias/patologia , Neoplasias/terapia , Obstetrícia/métodos , Obstetrícia/organização & administração , Guias de Prática Clínica como Assunto , Gravidez , Qualidade de Vida , Medicina Reprodutiva/métodos , Medicina Reprodutiva/organização & administração , Estados Unidos , Urologia/métodos , Urologia/organização & administração
11.
J Assist Reprod Genet ; 35(1): 71-79, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28936565

RESUMO

PURPOSE: Neutral red (NR) may assist identification of preantral follicles in pieces of cortical tissue prior to cryopreservation in cancer patients requesting fertility preservation. This study is the first to analyze this effect by follicle growth rate after long-term culture in primates. METHODS: Ovarian cortex was obtained from adult rhesus macaques, was cut into fragments, and was incubated with NR. Secondary follicles were readily visualized following NR staining and then were encapsulated into alginate beads and cultured individually for 4 weeks in αMEM media supplemented with 10 ng/ml FSH at 5% O2. RESULTS: The survival rates of secondary follicles during culture were similar between those derived from control tissue (71 ± 13%) and those treated with NR (68 ± 9%). The proportion of surviving follicles that formed an antrum were also similar in both groups (70 ± 17% control; 48 ± 24% NR-treated). Follicle diameters were not different between control follicles (184 ± 5µm) and those stained with NR (181 ± 7 µm) on the day of isolation. The percentages of surviving follicles within three cohorts based on their diameters at week 4 of culture were similar between the control group and NR-stained tissue group, fast-grow follicles (24 ± 6% vs. 13 ± 10%), slow-grow follicles (66 ± 5% vs. 60 ± 9%), or no-grow (10 ± 9% vs. 27 ± 6%), respectively. There were no differences in follicle diameters between groups during the culture period. Pre-exposure of secondary follicles to NR diminished their capacity to produce both estradiol and androstenedione by week 4 of culture, when follicles are exhibiting an antrum. Inhibitory effects of NR on steroid production by slow-grow follicles was less pronounced. CONCLUSIONS: NR does not affect secondary follicle survival, growth, and antrum formation during long-term culture, but steroid hormone production by fast-grow follicles is compromised. NR can be used as a non-invasive tool for in situ identification of viable secondary follicles in ovarian cortex before tissue cryopreservation without affecting follicle survival and growth in vitro. Whether maturation or developmental competence of oocytes derived from antral follicles in 3D culture that were previously isolated from NR-stained tissue is normal or compromised remains to be determined. Likewise, the functional consequences of pre-exposure to NR prior to ovarian cortical tissue cryopreservation and transplantation are unknown.


Assuntos
Técnicas de Cultura de Células/métodos , Macaca mulatta , Vermelho Neutro/farmacologia , Folículo Ovariano/efeitos dos fármacos , Folículo Ovariano/crescimento & desenvolvimento , Animais , Processos de Crescimento Celular/efeitos dos fármacos , Sobrevivência Celular , Feminino , Folículo Ovariano/citologia , Alicerces Teciduais
12.
Biol Reprod ; 96(5): 1052-1059, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28444134

RESUMO

The phosphoinositide 3-kinase/AKT (protein kinase B) signaling pathway negatively regulates follicle activation via the forkhead box O (FOXO) transcription factor in rodents. FOXO3 knockout mice exhibit global activation of primordial follicles leading to early depletion of ovarian follicles and subsequent infertility. Whether a similar mechanism for follicle activation exists in the primate ovary is unclear. In the current study, protein localization of FOXO1, 3, and 4 as well as their upstream regulator, AKT/p-AKT, was examined in rhesus macaque ovaries of three developmental stages: fetal, prepubertal, and adult. FOXO1 protein is expressed in granulosa cells of fetal, prepubertal, and adult ovaries. FOXO3 is distributed sparsely in the mitotically active germ cells, but its expression decreases following follicle formation in the macaque fetal ovary. In addition, FOXO3 is seldom with interanimal variation in the prepubertal ovary and is absent in the adult ovary. FOXO4 is nondetectable in fetal ovaries, although it is expressed in some theca cells of antral follicles and some stromal cells in prepubertal and adult ovaries. Our results suggest that the regulation and/or function of FOXO3 in the primate primordial follicle may differ than that of the rodent. Nevertheless, AKT/p-AKT is expressed in macaque primordial oocytes, suggesting that similar upstream events but different downstream effects may regulate primordial follicle activation in nonhuman primates compared to rodents. Elucidation of the mechanism responsible for follicle activation in primates will be crucial for understanding primary ovarian insufficiency, improving female fertility, and applying techniques for in vitro maturation of follicles for fertility preservation in cancer survivors.


Assuntos
Feto/metabolismo , Fatores de Transcrição Forkhead/genética , Ovário/metabolismo , Animais , Feminino , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O3/genética , Células da Granulosa/metabolismo , Imuno-Histoquímica , Macaca mulatta , Proteína Oncogênica v-akt/metabolismo , Ovário/crescimento & desenvolvimento , Maturidade Sexual , Células Estromais/metabolismo
13.
J Assist Reprod Genet ; 34(2): 291-300, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27900615

RESUMO

Products that are manufactured for use in a clinical trial, with the intent of gaining US Food and Drug Administration (FDA) approval for clinical use, must be produced under an FDA approved investigational new drug (IND) application. We describe work done toward generating reliable methodology and materials for preserving ovarian cortical tissue through a vitrification kit and reviving this tissue through a warming and recovery kit. We have described the critical steps, procedures, and environments for manufacturing products with the intent of submitting an IND. The main objective was to establish an easy-to-use kit that would ensure standardized procedures for quality tissue preservation and recovery across the 117 Oncofertility Consortium sites around the globe. These kits were developed by breaking down the components and steps of a research protocol and recombining them in a way that considers component stability and use in a clinical setting. The kits were manufactured utilizing current good manufacturing practice (cGMP) requirements and environment, along with current good laboratory practices (cGLP) techniques. Components of the kit were tested for sterility and endotoxicity, and morphological endpoint release criteria were established. We worked with the intended down-stream users of these kits for development of the kit instructions. Our intention is to test these initial kits, developed and manufactured here, for submission of an IND and to begin clinical testing for preserving the ovarian tissue that may be used for future restoration of fertility and/or hormone function in women who have gonadal dysgenesis from gonadotoxic treatment regimens or disease.


Assuntos
Pesquisa Biomédica , Kit de Reagentes para Diagnóstico , Vitrificação , Feminino , Humanos , Folículo Ovariano/fisiologia , Estados Unidos , United States Food and Drug Administration
14.
J Assist Reprod Genet ; 34(11): 1427-1434, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28942525

RESUMO

PURPOSE: The main purposes of the study were to investigate the endocrine function of ovarian tissue transplanted to heterotopic subcutaneous sites and the reproductive competence and telomere length of a nonhuman primate originating from transplanted tissue. METHODS: Ovarian cortex pieces were transplanted into the original rhesus macaques in the arm subcutaneously, in the abdomen next to muscles, or in the kidney. Serum estradiol (E2) and progesterone (P4) concentrations were measured weekly for up to 8 years following tissue transplantation. A monkey derived from an oocyte in transplanted ovarian tissue entered time-mated breeding and underwent controlled ovarian stimulation. Pregnancy and offspring were evaluated. Telomere lengths and oocytes obtained following controlled ovarian stimulation were assessed. RESULTS: Monkeys with transplants in the arm and abdomen had cyclic E2 of 100 pg/ml, while an animal with arm transplants had E2 of 50 pg/ml. One monkey with transplants in the abdomen and kidney had ovulatory cycles for 3 years. A monkey derived from an oocyte in transplanted tissue conceived and had a normal gestation until intrapartum fetal demise. She conceived again and delivered a healthy offspring at term. Controlled ovarian stimulations of this monkey yielded mature oocytes comparable to controls. Her telomere length was long relative to controls. CONCLUSIONS: Heterotopic ovarian tissue transplants yielded long-term endocrine function in macaques. A monkey derived from an oocyte in transplanted tissue was reproductively competent. Her telomere length did not show epigenetically induced premature cellular aging. Ovarian tissue transplantation to heterotopic sites for fertility preservation should move forward cautiously, yet optimistically.


Assuntos
Preservação da Fertilidade/métodos , Oócitos/crescimento & desenvolvimento , Folículo Ovariano/transplante , Ovário/transplante , Reprodução/fisiologia , Animais , Criopreservação , Estradiol/sangue , Feminino , Macaca mulatta/genética , Macaca mulatta/fisiologia , Folículo Ovariano/crescimento & desenvolvimento , Ovário/crescimento & desenvolvimento , Indução da Ovulação/métodos , Gravidez , Progesterona/sangue , Reprodução/genética , Homeostase do Telômero/genética
16.
Adv Exp Med Biol ; 761: 43-67, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24097381

RESUMO

The factors and processes involved in primate follicular development are complex and not fully understood. An encapsulated three-dimensional (3D) follicle culture system could be a valuable in vitro model to study the dynamics and regulation of folliculogenesis in intact individual follicles in primates. Besides the research relevance, in vitro follicle maturation (IFM) is emerging as a promising approach to offer options for fertility preservation in female patients with cancer. This review summarizes the current published data on in vitro follicular development from the preantral to small antral stage in nonhuman primates, including follicle survival and growth, endocrine (ovarian steroid hormone) and paracrine/autocrine (local factor) function, as well as oocyte maturation and fertilization. Future directions include major challenges and strategies to further improve follicular growth and differentiation with oocytes competent for in vitro fertilization and subsequent embryonic development, as well as opportunities to investigate primate folliculogenesis by utilizing this 3D culture system. The information may be valuable in identifying optimal conditions for human follicle culture, with the ultimate goal of translating the experimental results and products to patients, thereby facilitating diagnostic and therapeutic approaches for female fertility.


Assuntos
Preservação da Fertilidade , Oócitos/fisiologia , Oogênese/fisiologia , Folículo Ovariano/citologia , Animais , Feminino , Fertilização in vitro , Humanos , Oócitos/citologia , Folículo Ovariano/fisiologia , Primatas
17.
J Assist Reprod Genet ; 30(3): 353-9, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23423613

RESUMO

PURPOSE: The small antral follicles (SAFs) from the ovarian medulla can be a potential source of oocytes for infertility patients, but little is known about their ability to yield mature oocytes. This study evaluated the response of these SAFs to a stimulatory bolus of human corionic gonadotropin (hCG) in vitro. METHODS: Oocyte nuclear maturation and hormone production (estradiol [E2], progesterone [P4]), antimullerian hormone [AMH]) by individual intact SAFs (n = 91; >0.5 mm; n = 5 monkeys) was evaluated after 34 h of culture in the absence (control) or presence of hCG. RESULTS: Of the total cohort (n = 91), 49 % of SAFs contained degenerating oocytes. The percentage of healthy oocytes able to reinitiate meiosis to the metaphase I (MI) and MII was greater (p < 0.05) after hCG compared to controls. E2, P4 and AMH levels were higher (p < 0.05) in SAF cultures containing germinal vesicle (GV) oocytes compared to those with MII oocytes regardless of hCG exposure. SAF with MI oocytes produced more E2, but less (p < 0.05) P4 and AMH compared to SAFs containing GV oocytes (p < 0.05). Follicles ≥1 mm produced more (p < 0.05) E2, whereas follicle diameter did not correlate with P4 or AMH levels. Only P4 increased (p < 0.05) in response to hCG, regardless of follicle size or oocyte maturity. SAFs containing degenerating oocytes produced similar levels of E2, P4 and AMH compared to SAFs containing healthy oocytes. CONCLUSIONS: These data indicate, for the first time, that oocytes within primate SAFs can reinitiate meiosis in vitro in the absence of hCG, but nuclear maturation is enhanced in SAFs cultured with hCG. Oocyte nuclear maturation within SAFs in is associated with decreased E2, P4 and AMH levels. Furthermore, hormone content within the culture media does not necessarily reflect oocyte quality.


Assuntos
Técnicas de Maturação in Vitro de Oócitos , Macaca mulatta/crescimento & desenvolvimento , Oócitos/citologia , Folículo Ovariano/citologia , Animais , Hormônio Antimülleriano/metabolismo , Estradiol/metabolismo , Feminino , Fertilização in vitro , Gonadotropinas/metabolismo , Humanos , Meiose , Oócitos/crescimento & desenvolvimento , Oogênese/efeitos dos fármacos , Folículo Ovariano/crescimento & desenvolvimento , Gravidez , Progesterona/metabolismo
18.
Hum Reprod ; 27(8): 2430-7, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22593432

RESUMO

BACKGROUND: In non-primates, the epidermal growth factor (EGF) and EGF-related ligands such as amphiregulin (AREG) serve as critical intermediates between the theca/mural cells and the cumulus-oocyte-complex (COC) following the mid-cycle LH surge. Studies were designed in primates (1) to analyze AREG levels in follicular fluid (follicular fluid) obtained from pre-ovulatory follicles, as well as (2) to assess dose-dependent effects of AREG on oocytes from small antral follicles (SAFs) during culture, including meiotic and cytoplasmic maturation. METHODS: Controlled ovulation protocols were performed on rhesus monkeys (n=12) to determine AREG content within the single, naturally selected dominant follicle after an ovulatory stimulus. Using healthy COCs (n=271) obtained from SAFs during spontaneous cycles (n=27), in vitro maturation (IVM) was performed in the absence or presence of physiological concentrations of AREG (10 or 100 ng/ml) with or without gonadotrophins (FSH, 75 mIU/ml; LH, 75 mIU/ml). At the end of the culture period, oocyte meiotic maturation was evaluated and ICSI was performed (n=111), from which fertilization and early embryo development was followed in vitro. RESULTS: AREG levels in follicular fluid from pre-ovulatory follicles increased (P<0.05) following an ovulatory bolus of hCG at 12, 24 and 36 h post-treatment. At 12 h post-hCG, AREG levels in follicular fluid ranged from 4.8 to 121.4 ng/ml. Rhesus macaque COCs incubated with 10 ng/ml AREG in the presence of gonadotrophins displayed an increased percentage of oocytes that progressed to the metaphase II (MII) stage of meiosis (82 versus 56%, P<0.05) and a decreased percentage of metaphase I (MI) oocytes (2 versus 23%, P<0.05) relative to controls, respectively. The percentage of either MI or MII oocytes at the end of the culture period was not different between oocytes cultured with 100 ng/ml AREG or in media alone. Fertilization and first cleavage rates obtained by ICSI of all IVM MII oocytes were 93 and 98%, respectively, and did not vary among treatment groups. Of the MII oocytes that fertilized (n=103), 37 were randomly selected and maintained in culture to assess developmental potential. A total of 13 early blastocysts were obtained, with four embryos developing to expanded blastocysts. CONCLUSIONS: These data indicate that AREG levels increase in rhesus macaque pre-ovulatory follicles after an ovulatory stimulus, and a specific concentration of AREG (10 ng/ml) enhances rhesus macaque oocyte nuclear maturation but not cytoplasmic maturation from SAFs obtained during the natural menstrual cycle. However, owing to the small number of samples in some treatment groups, further studies are now required.


Assuntos
Glicoproteínas/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Oócitos/citologia , Anfirregulina , Animais , Blastocisto/citologia , Células Cultivadas , Citoplasma/metabolismo , Relação Dose-Resposta a Droga , Ensaio de Imunoadsorção Enzimática/métodos , Feminino , Líquido Folicular/metabolismo , Ligantes , Hormônio Luteinizante/metabolismo , Macaca mulatta , Meiose , Oogênese , Folículo Ovariano/citologia , Ovário/fisiologia , Fatores de Tempo
19.
Cryobiology ; 65(1): 1-11, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22569078

RESUMO

Ovarian tissue cryopreservation is the only proven option for fertility preservation in female cancer patients who are prepubertal or require immediate treatment. However it remains unclear which cryopreservation protocol is best in cases where the tissue may contain cancerous cells, as these should be matured in vitro rather than autografted. This study evaluated different cryoprotectant exposure times and whether the addition of synthetic polymers (Supercool X-1000, Z-1000 and polyvinylpyrrolidone [PVP K-12]) to the vitrification solution is beneficial to tissue morphology, cellular proliferation and subsequent in vitro function of secondary follicles. Pieces of macaque (n=4) ovarian cortex were exposed to vitrification solution containing glycerol (25%, v/v) and ethylene glycol (25%, v/v) for 3 or 8 min, without (V3, V8) or with (VP3, VP8) polymers (0.2% [v/v] X-1000, 0.4% Z-1000 and 0.2% PVP). Fresh and vitrified tissues were fixed for histology and phosphohistone H3 (PPH3) analysis, or used for secondary follicle isolation followed by encapsulated 3D culture. Five-week follicle survival and growth, as well as steroid hormones (estradiol [E(2)], progesterone, androstenedione) were measured weekly. Morphology of the stroma and preantral follicles as well as PPH3 expression, was preserved in all vitrified tissues. Vitrification with polymers and shorter incubation time (VP3) increased in vitro follicle survival and E(2) production compared to other vitrified groups. Thus, a short exposure of macaque ovarian tissue to a vitrification solution containing synthetic polymers preserves morphology and improves in vitro function of secondary follicles.


Assuntos
Criopreservação/métodos , Crioprotetores/farmacologia , Oócitos/citologia , Folículo Ovariano/crescimento & desenvolvimento , Ovário/crescimento & desenvolvimento , Polímeros/farmacologia , Animais , Feminino , Preservação da Fertilidade/métodos , Hormônios Esteroides Gonadais/metabolismo , Histonas/metabolismo , Macaca mulatta/metabolismo , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Folículo Ovariano/efeitos dos fármacos , Ovário/efeitos dos fármacos , Fatores de Tempo , Vitrificação
20.
Hum Reprod ; 26(9): 2461-72, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21705370

RESUMO

BACKGROUND: Ovarian tissue cryopreservation is the only option for preserving fertility in prepubertal girls and cancer patients requiring immediate treatment. Following ovarian tissue cryopreservation, fertility can be restored after tissue transplant or in vitro follicle maturation. METHODS: Macaque (n= 4) ovarian cortex was cryopreserved using slow-rate freezing (slow freezing) or vitrification. Tissues were fixed for histology or phosphohistone H3 (PPH3) analysis, cultured with bromodeoxyuridine (BrdU) or used for three-dimensional secondary follicle culture. Follicular diameter and steroid hormones were measured weekly. RESULTS: Slow freezing induced frequent cryo-injuries while vitrification consistently maintained morphology of the stroma and secondary follicles. PPH3 was similar in fresh and vitrified, but sparse in slow-frozen tissues. BrdU uptake appeared diminished following both methods compared with that in fresh follicles. In vitro follicle survival and growth were greater in fresh than in cryopreserved follicles. Antrum formation appeared similar after vitrification compared with the fresh, but was reduced following slow freezing. Steroid production was delayed or diminished following both methods compared with fresh samples. CONCLUSIONS: Secondary follicle morphology was improved after vitrification relative to slow freezing. Following vitrification, stroma was consistently more compact with intact cells typical to that of fresh tissue. BrdU uptake demonstrated follicle viability post-thaw/warming. For the first time, although not to the extent of fresh follicles, macaque follicles from cryopreserved tissue can survive, grow, form an antrum and produce steroid hormones, indicating some functional preservation. The combination of successful ovarian tissue cryopreservation with in vitro maturation of follicles will offer a major advancement to the field of fertility preservation.


Assuntos
Criopreservação/métodos , Macaca mulatta , Folículo Ovariano/fisiologia , Ovário/fisiologia , Animais , Feminino , Preservação da Fertilidade , Técnicas de Cultura de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA