Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Nano ; 18(1): 1063-1072, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38117038

RESUMO

Phase-change memory (PCM) is an emerging memory technology based on the resistance contrast between the crystalline and amorphous states of a material. Further development and realization of PCM as a mainstream memory technology rely on innovative materials and inexpensive fabrication methods. Here, we propose a generalizable and scalable solution-processing approach to synthesize phase-change telluride inks in order to meet demands for high-throughput material screening, increased energy efficiency, and advanced device architectures. Bulk tellurides, such as Sb2Te3, GeTe, Sc2Te3, and TiTe2, are dissolved and purified to obtain inks of molecular metal telluride complexes. This allowed us to unlock a wide range of solution-processed ternary tellurides by the simple mixing of binary inks. We demonstrate accurate and quantitative composition control, including prototype materials (Ge-Sb-Te) and emerging rare-earth-metal telluride-doped materials (Sc-Sb-Te). Spin-coating and annealing convert ink formulations into high-quality, phase-pure telluride films with preferred orientation along the (00l) direction. Deposition engineering of liquid tellurides enables thickness-tunable films, infilling of nanoscale vias, and film preparation on flexible substrates. Finally, we demonstrate cyclable and non-volatile prototype memory devices, achieving performance indicators such as resistance contrast and low reset energy on par with state-of-the-art sputtered PCM layers.

2.
Light Sci Appl ; 11(1): 78, 2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35351848

RESUMO

Memristive devices are an emerging new type of devices operating at the scale of a few or even single atoms. They are currently used as storage elements and are investigated for performing in-memory and neuromorphic computing. Amongst these devices, Ag/amorphous-SiOx/Pt memristors are among the most studied systems, with the electrically induced filament growth and dynamics being thoroughly investigated both theoretically and experimentally. In this paper, we report the observation of a novel feature in these devices: The appearance of new photoluminescent centers in SiOx upon memristive switching, and photon emission correlated with the conductance changes. This observation might pave the way towards an intrinsically memristive atomic scale light source with applications in neural networks, optical interconnects, and quantum communication.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA