Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ann Neurol ; 87(2): 289-301, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31777112

RESUMO

OBJECTIVE: Regional variations in oscillatory activity during human sleep remain unknown. Using the unique ability of intracranial electroencephalography to study in situ brain physiology, this study assesses regional variations of electroencephalographic sleep activity and creates the first atlas of human sleep using recordings from the first sleep cycle. METHODS: Intracerebral electroencephalographic recordings with channels displaying physiological activity from nonlesional tissue were selected from 91 patients of 3 tertiary epilepsy centers. Sections during non-rapid eye movement sleep (stages N2 and N3) and rapid eye movement sleep (stage R) were selected from the first sleep cycle for oscillatory and nonoscillatory signal analysis. Results of 1,468 channels were grouped into 38 regions covering all cortical areas. RESULTS: We found regional differences in the distribution of sleep transients and spectral content during all sleep stages. There was a caudorostral gradient, with more slow frequencies and fewer spindles in temporoparieto-occipital than in frontal cortex. Moreover, deep-seated structures showed spectral peaks differing from the baseline electroencephalogram. The regions with >60% of channels presenting significant rhythmic activity were either mesial or temporal basal structures that contribute minimally to the scalp electroencephalogram. Finally, during deeper sleep stages, electroencephalographic analysis revealed a more homogeneous spatial distribution, with increased coupling between high and low frequencies. INTERPRETATION: This study provides a better understanding of the regional variability of sleep, and establishes a baseline for human sleep in all cortical regions during the first sleep cycle. Furthermore, the open-access atlas will be a unique resource for research (https://mni-open-ieegatlas. RESEARCH: mcgill.ca). ANN NEUROL 2020;87:289-301.


Assuntos
Córtex Cerebral/fisiologia , Eletrocorticografia/métodos , Fases do Sono/fisiologia , Adolescente , Adulto , Mapeamento Encefálico/estatística & dados numéricos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
2.
Neuroimage ; 223: 117314, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32882382

RESUMO

Targeted interrogation of brain networks through invasive brain stimulation has become an increasingly important research tool as well as therapeutic modality. The majority of work with this emerging capability has been focused on open-loop approaches. Closed-loop techniques, however, could improve neuromodulatory therapies and research investigations by optimizing stimulation approaches using neurally informed, personalized targets. Implementing closed-loop systems is challenging particularly with regard to applying consistent strategies considering inter-individual variability. In particular, during intracranial epilepsy monitoring, where much of this research is currently progressing, electrodes are implanted exclusively for clinical reasons. Thus, detection and stimulation sites must be participant- and task-specific. The system must run in parallel with clinical systems, integrate seamlessly with existing setups, and ensure safety features are in place. In other words, a robust, yet flexible platform is required to perform different tests with a single participant and to comply with clinical requirements. In order to investigate closed-loop stimulation for research and therapeutic use, we developed a Closed-Loop System for Electrical Stimulation (CLoSES) that computes neural features which are then used in a decision algorithm to trigger stimulation in near real-time. To summarize CLoSES, intracranial electroencephalography (iEEG) signals are acquired, band-pass filtered, and local and network features are continuously computed. If target features are detected (e.g. above a preset threshold for a certain duration), stimulation is triggered. Not only could the system trigger stimulation while detecting real-time neural features, but we incorporated a pipeline wherein we used an encoder/decoder model to estimate a hidden cognitive state from the neural features. CLoSES provides a flexible platform to implement a variety of closed-loop experimental paradigms in humans. CLoSES has been successfully used with twelve patients implanted with depth electrodes in the epilepsy monitoring unit. During cognitive tasks (N=5), stimulation in closed loop modified a cognitive hidden state on a trial by trial basis. Sleep spindle oscillations (N=6) and sharp transient epileptic activity (N=9) were detected in near real-time, and stimulation was applied during the event or at specified delays (N=3). In addition, we measured the capabilities of the CLoSES system. Total latency was related to the characteristics of the event being detected, with tens of milliseconds for epileptic activity and hundreds of milliseconds for spindle detection. Stepwise latency, the actual duration of each continuous step, was within the specified fixed-step duration and increased linearly with the number of channels and features. We anticipate that probing neural dynamics and interaction between brain states and stimulation responses with CLoSES will lead to novel insights into the mechanism of normal and pathological brain activity, the discovery and evaluation of potential electrographic biomarkers of neurological and psychiatric disorders, and the development and testing of patient-specific stimulation targets and control signals before implanting a therapeutic device.


Assuntos
Estimulação Encefálica Profunda/instrumentação , Estimulação Encefálica Profunda/métodos , Processamento de Sinais Assistido por Computador , Encéfalo/fisiologia , Eletroencefalografia , Humanos , Neuroestimuladores Implantáveis , Neurônios/fisiologia , Software
3.
Ann Neurol ; 84(3): 374-385, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30051505

RESUMO

OBJECTIVE: High-frequency oscillations (HFOs) are a promising biomarker for the epileptogenic zone. It has not been possible, however, to differentiate physiological from pathological HFOs, and baseline rates of HFO occurrence vary substantially across brain regions. This project establishes region-specific normative values for physiological HFOs and high-frequency activity (HFA). METHODS: Intracerebral stereo-encephalographic recordings with channels displaying normal physiological activity from nonlesional tissue were selected from 2 tertiary epilepsy centers. Twenty-minute sections from N2/N3 sleep were selected for automatic detection of ripples (80-250Hz), fast ripples (>250Hz), and HFA defined as long-lasting activity > 80Hz. Normative values are provided for 17 brain regions. RESULTS: A total of 1,171 bipolar channels with normal physiological activity from 71 patients were analyzed. The highest rates of ripples were recorded in the occipital cortex, medial and basal temporal region, transverse temporal gyrus and planum temporale, pre- and postcentral gyri, and medial parietal lobe. The mean rate of fast ripples was very low (0.038/min). Only 5% of channels had a rate > 0.2/min HFA was observed in the medial occipital lobe, pre- and postcentral gyri, transverse temporal gyri and planum temporale, and lateral occipital lobe. INTERPRETATION: This multicenter atlas is the first to provide region-specific normative values for physiological HFO rates and HFA in common stereotactic space; rates above these can now be considered pathological. Physiological ripples are frequent in eloquent cortex. In contrast, physiological fast ripples are very rare, making fast ripples a good candidate for defining the epileptogenic zone. Ann Neurol 2018;84:374-385.


Assuntos
Mapeamento Encefálico , Ondas Encefálicas/fisiologia , Encéfalo/fisiologia , Eletroencefalografia , Adulto , Biomarcadores , Eletrodos , Eletroencefalografia/métodos , Feminino , Humanos , Masculino
4.
Brain ; 141(4): 1130-1144, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29506200

RESUMO

In contrast to scalp EEG, our knowledge of the normal physiological intracranial EEG activity is scarce. This multicentre study provides an atlas of normal intracranial EEG of the human brain during wakefulness. Here we present the results of power spectra analysis during wakefulness. Intracranial electrodes are placed in or on the brain of epilepsy patients when candidates for surgical treatment and non-invasive approaches failed to sufficiently localize the epileptic focus. Electrode contacts are usually in cortical regions showing epileptic activity, but some are placed in normal regions, at distance from the epileptogenic zone or lesion. Intracranial EEG channels defined using strict criteria as very likely to be in healthy brain regions were selected from three tertiary epilepsy centres. All contacts were localized in a common stereotactic space allowing the accumulation and superposition of results from many subjects. Sixty-second artefact-free sections during wakefulness were selected. Power spectra were calculated for 38 brain regions, and compared to a set of channels with no spectral peaks in order to identify significant peaks in the different regions. A total of 1785 channels with normal brain activity from 106 patients were identified. There were on average 2.7 channels per cm3 of cortical grey matter. The number of contacts per brain region averaged 47 (range 6-178). We found significant differences in the spectral density distributions across the different brain lobes, with beta activity in the frontal lobe (20-24 Hz), a clear alpha peak in the occipital lobe (9.25-10.25 Hz), intermediate alpha (8.25-9.25 Hz) and beta (17-20 Hz) frequencies in the parietal lobe, and lower alpha (7.75-8.25 Hz) and delta (0.75-2.25 Hz) peaks in the temporal lobe. Some cortical regions showed a specific electrophysiological signature: peaks present in >60% of channels were found in the precentral gyrus (lateral: peak frequency range, 20-24 Hz; mesial: 24-30 Hz), opercular part of the inferior frontal gyrus (20-24 Hz), cuneus (7.75-8.75 Hz), and hippocampus (0.75-1.25 Hz). Eight per cent of all analysed channels had more than one spectral peak; these channels were mostly recording from sensory and motor regions. Alpha activity was not present throughout the occipital lobe, and some cortical regions showed peaks in delta activity during wakefulness. This is the first atlas of normal intracranial EEG activity; it includes dense coverage of all cortical regions in a common stereotactic space, enabling direct comparisons of EEG across subjects. This atlas provides a normative baseline against which clinical EEGs and experimental results can be compared. It is provided as an open web resource (https://mni-open-ieegatlas. RESEARCH: mcgill.ca).


Assuntos
Mapeamento Encefálico , Córtex Cerebral/fisiopatologia , Eletrocorticografia/métodos , Epilepsia/patologia , Adulto , Córtex Cerebral/diagnóstico por imagem , Eletrodos , Epilepsia/diagnóstico por imagem , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neuroimagem , Análise Espectral , Vigília , Adulto Jovem
5.
Ann Neurol ; 81(5): 664-676, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28380659

RESUMO

OBJECTIVE: Intraoperative electrocorticography (ECoG) can be used to delineate the resection area in epilepsy surgery. High-frequency oscillations (HFOs; 80-500 Hz) seem better biomarkers for epileptogenic tissue than spikes. We studied how HFOs and spikes in combined pre- and postresection ECoG predict surgical outcome in different tailoring approaches. METHODS: We, retrospectively, marked HFOs, divided into fast ripples (FRs; 250-500 Hz) and ripples (80-250 Hz), and spikes in pre- and postresection ECoG sampled at 2,048 Hz in people with refractory focal epilepsy. We defined four groups of electroencephalography (EEG) event occurrence: pre+post- (+/-), pre+post+ (+/+), pre-post+ (-/+) and pre-post- (-/-). We subcategorized three tailoring approaches: hippocampectomy with tailoring for neocortical involvement; lesionectomy of temporal lesions with tailoring for mesiotemporal involvement; and lesionectomy with tailoring for surrounding neocortical involvement. We compared the percentage of resected pre-EEG events, time to recurrence, and the different tailoring approaches to outcome (seizure-free vs recurrence). RESULTS: We included 54 patients (median age, 15.5 years; 25 months of follow-up; 30 seizure free). The percentage of resected FRs, ripples, or spikes in pre-ECoG did not predict outcome. The occurrence of FRs in post-ECoG, given FRs in pre-ECoG (+/-, +/+), predicted outcome (hazard ratio, 3.13; confidence interval = 1.22-6.25; p = 0.01). Seven of 8 patients without spikes in pre-ECoG were seizure free. The highest predictive value for seizure recurrence was presence of FRs in post-ECoG for all tailoring approaches. INTERPRETATION: FRs that persist before and after resection predict poor postsurgical outcome. These findings hold for different tailoring approaches. FRs can thus be used for tailoring epilepsy surgery with repeated intraoperative ECoG measurements. Ann Neurol 2017;81:664-676.


Assuntos
Ondas Encefálicas/fisiologia , Eletrocorticografia/métodos , Epilepsias Parciais/fisiopatologia , Epilepsias Parciais/cirurgia , Monitorização Neurofisiológica Intraoperatória/métodos , Avaliação de Resultados em Cuidados de Saúde/métodos , Adolescente , Adulto , Criança , Epilepsia Resistente a Medicamentos/cirurgia , Feminino , Seguimentos , Humanos , Masculino , Prognóstico , Adulto Jovem
6.
Hum Brain Mapp ; 37(5): 1661-83, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26931511

RESUMO

Detection of epileptic spikes in MagnetoEncephaloGraphy (MEG) requires synchronized neuronal activity over a minimum of 4cm2. We previously validated the Maximum Entropy on the Mean (MEM) as a source localization able to recover the spatial extent of the epileptic spike generators. The purpose of this study was to evaluate quantitatively, using intracranial EEG (iEEG), the spatial extent recovered from MEG sources by estimating iEEG potentials generated by these MEG sources. We evaluated five patients with focal epilepsy who had a pre-operative MEG acquisition and iEEG with MRI-compatible electrodes. Individual MEG epileptic spikes were localized along the cortical surface segmented from a pre-operative MRI, which was co-registered with the MRI obtained with iEEG electrodes in place for identification of iEEG contacts. An iEEG forward model estimated the influence of every dipolar source of the cortical surface on each iEEG contact. This iEEG forward model was applied to MEG sources to estimate iEEG potentials that would have been generated by these sources. MEG-estimated iEEG potentials were compared with measured iEEG potentials using four source localization methods: two variants of MEM and two standard methods equivalent to minimum norm and LORETA estimates. Our results demonstrated an excellent MEG/iEEG correspondence in the presumed focus for four out of five patients. In one patient, the deep generator identified in iEEG could not be localized in MEG. MEG-estimated iEEG potentials is a promising method to evaluate which MEG sources could be retrieved and validated with iEEG data, providing accurate results especially when applied to MEM localizations. Hum Brain Mapp 37:1661-1683, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Mapeamento Encefálico , Encéfalo/fisiopatologia , Epilepsia Resistente a Medicamentos/patologia , Eletrocorticografia , Magnetoencefalografia , Encéfalo/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Potenciais Evocados/fisiologia , Feminino , Humanos , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Masculino , Estudos Retrospectivos
7.
Epilepsy Behav ; 62: 258-66, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27517349

RESUMO

INTRODUCTION: High-frequency oscillations (HFOs, 80-500Hz) are newly-described EEG markers of epileptogenicity. The proportion of physiological and pathological HFOs is unclear, as frequency analysis is insufficient for separating the two types of events. For instance, ripples (80-250Hz) also occur physiologically during memory consolidation processes in medial temporal lobe structures. We investigated the correlation between HFO rates and memory performance. METHODS: Patients investigated with bilateral medial temporal electrodes and an intellectual capacity allowing for memory testing were included. High-frequency oscillations were visually marked, and rates of HFOs were calculated for each channel during slow-wave sleep. Patients underwent three verbal and three nonverbal memory tests. They were grouped into severe impairment, some impairment, mostly intact, or intact for verbal and nonverbal memory. We calculated a Pearson correlation between HFO rates in the hippocampi and the memory category and compared HFO rates in each hippocampus with the corresponding (verbal - left, nonverbal - right) memory result using Wilcoxon rank-sum test. RESULTS: Twenty patients were included; ten had bilateral, five had unilateral, and five had no memory impairment. Unilateral memory impairment was verbal in one patient and nonverbal in four. There was no correlation between HFO rates and memory performance in seizure onset areas. There was, however, a significant negative correlation between the overall memory performance and ripple rates (r=-0.50, p=0.03) outside the seizure onset zone. CONCLUSION: Our results suggest that the majority of spontaneous hippocampal ripples, as defined in the present study, may reflect pathological activity, taking into account the association with memory impairment. The absence of negative correlation between memory performance and HFO rates in seizure onset areas could be explained by HFO rates in the SOZ being generally so high that differences between areas with remaining and impaired memory function cannot be seen.


Assuntos
Epilepsia Resistente a Medicamentos/fisiopatologia , Hipocampo/fisiopatologia , Memória/fisiologia , Convulsões/fisiopatologia , Adolescente , Adulto , Eletroencefalografia/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Sono/fisiologia , Lobo Temporal/fisiopatologia , Aprendizagem Verbal/fisiologia , Adulto Jovem
8.
Nat Commun ; 15(1): 6982, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143083

RESUMO

Theta-burst stimulation (TBS), a patterned brain stimulation technique that mimics rhythmic bursts of 3-8 Hz endogenous brain rhythms, has emerged as a promising therapeutic approach for treating a wide range of brain disorders, though the neural mechanism of TBS action remains poorly understood. We investigated the neural effects of TBS using intracranial EEG (iEEG) in 10 pre-surgical epilepsy participants undergoing intracranial monitoring. Here we show that individual bursts of direct electrical TBS at 29 frontal and temporal sites evoked strong neural responses spanning broad cortical regions. These responses exhibited dynamic local field potential voltage changes over the course of stimulation presentations, including either increasing or decreasing responses, suggestive of short-term plasticity. Stronger stimulation augmented the mean TBS response amplitude and spread with more recording sites demonstrating short-term plasticity. TBS responses were stimulation site-specific with stronger TBS responses observed in regions with strong baseline stimulation effective (cortico-cortical evoked potentials) and functional (low frequency phase locking) connectivity. Further, we could use these measures to predict stable and varying (e.g. short-term plasticity) TBS response locations. Future work may integrate pre-treatment connectivity alongside other biophysical factors to personalize stimulation parameters, thereby optimizing induction of neuroplasticity within disease-relevant brain networks.


Assuntos
Encéfalo , Plasticidade Neuronal , Ritmo Teta , Humanos , Masculino , Adulto , Feminino , Ritmo Teta/fisiologia , Encéfalo/fisiologia , Plasticidade Neuronal/fisiologia , Epilepsia/fisiopatologia , Epilepsia/terapia , Adulto Jovem , Rede Nervosa/fisiologia , Pessoa de Meia-Idade , Eletroencefalografia , Potenciais Evocados/fisiologia , Estimulação Elétrica/métodos , Eletrocorticografia
9.
J Neurosci Methods ; 408: 110160, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38734149

RESUMO

Simultaneous noninvasive and invasive electrophysiological recordings provide a unique opportunity to achieve a comprehensive understanding of human brain activity, much like a Rosetta stone for human neuroscience. In this review we focus on the increasingly-used powerful combination of intracranial electroencephalography (iEEG) with scalp electroencephalography (EEG) or magnetoencephalography (MEG). We first provide practical insight on how to achieve these technically challenging recordings. We then provide examples from clinical research on how simultaneous recordings are advancing our understanding of epilepsy. This is followed by the illustration of how human neuroscience and methodological advances could benefit from these simultaneous recordings. We conclude with a call for open data sharing and collaboration, while ensuring neuroethical approaches and argue that only with a true collaborative approach the promises of simultaneous recordings will be fulfilled.


Assuntos
Encéfalo , Magnetoencefalografia , Humanos , Magnetoencefalografia/métodos , Encéfalo/fisiologia , Eletroencefalografia/métodos , Epilepsia/fisiopatologia , Eletrocorticografia/métodos
10.
Neuroimage ; 82: 564-73, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23792218

RESUMO

Neurophysiological studies have reported functional network alterations in epilepsy, most consistently in the theta frequency band. Highly interconnected brain regions (so-called 'hubs') seem to be important in these epileptic networks. High frequency oscillations (HFOs) in intracranial EEG recordings are recently discovered biomarkers that can identify the epileptogenic area and are thought to result from altered neuronal interactions. We studied whether the epileptogenic zone (identified by HFOs and seizure onset zone) is associated with pathological hubs. Bilateral depth electrode recordings from the hippocampus and amygdala were available from twelve patients suspected of temporal lobe epilepsy. HFOs, classified as ripples (80-250 Hz) and fast ripples (250-500 Hz), and epileptiform spikes were marked for all patients in a five-minute epoch of slow-wave sleep. For each channel, we computed hub-measures from a period without epileptiform spikes and found that the epileptogenic zone was associated with a decreased hub-value in the theta frequency band. The amount of HFOs, especially fast ripples, was negatively correlated with the hub-value per channel. Results from post-hoc analyses of other frequency bands, particularly the broad- and gamma frequency band, pointed in the same direction as the results for the theta frequency band. These findings suggest a pathological functional 'isolation' of the epileptogenic zone in the interictal state.


Assuntos
Encéfalo/fisiopatologia , Epilepsia do Lobo Temporal/fisiopatologia , Rede Nervosa/fisiopatologia , Adulto , Eletrodos Implantados , Eletroencefalografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Convulsões/fisiopatologia , Processamento de Sinais Assistido por Computador , Adulto Jovem
11.
Ann Neurol ; 71(2): 169-78, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22367988

RESUMO

The discovery that electroencephalography (EEG) contains useful information at frequencies above the traditional 80Hz limit has had a profound impact on our understanding of brain function. In epilepsy, high-frequency oscillations (HFOs, >80Hz) have proven particularly important and useful. This literature review describes the morphology, clinical meaning, and pathophysiology of epileptic HFOs. To record HFOs, the intracranial EEG needs to be sampled at least at 2,000Hz. The oscillatory events can be visualized by applying a high-pass filter and increasing the time and amplitude scales, or EEG time-frequency maps can show the amount of high-frequency activity. HFOs appear excellent markers for the epileptogenic zone. In patients with focal epilepsy who can benefit from surgery, invasive EEG is often required to identify the epileptic cortex, but current information is sometimes inadequate. Removal of brain tissue generating HFOs has been related to better postsurgical outcome than removing the seizure onset zone, indicating that HFOs may mark cortex that needs to be removed to achieve seizure control. The pathophysiology of epileptic HFOs is challenging, probably involving populations of neurons firing asynchronously. They differ from physiological HFOs in not being paced by rhythmic inhibitory activity and in their possible origin from population spikes. Their link to the epileptogenic zone argues that their study will teach us much about the pathophysiology of epileptogenesis and ictogenesis. HFOs show promise for improving surgical outcome and accelerating intracranial EEG investigations. Their potential needs to be assessed by future research.


Assuntos
Córtex Cerebral/fisiopatologia , Eletroencefalografia , Epilepsia/fisiopatologia , Processamento de Sinais Assistido por Computador , Córtex Cerebral/patologia , Córtex Cerebral/cirurgia , Eletroencefalografia/métodos , Epilepsia/diagnóstico , Epilepsia/cirurgia , Humanos , Neurônios/metabolismo , Neurônios/patologia
12.
Epilepsia ; 54(5): 848-57, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23294353

RESUMO

PURPOSE: Removal of areas generating high-frequency oscillations (HFOs) recorded from the intracerebral electroencephalography (iEEG) of patients with medically intractable epilepsy has been found to be correlated with improved surgical outcome. However, whether differences exist according to the type of epilepsy is largely unknown. We performed a comparative assessment of the impact of removing HFO-generating tissue on surgical outcome between temporal lobe epilepsy (TLE) and extratemporal lobe epilepsy (ETLE). We also assessed the relationship between the extent of surgical resection and surgical outcome. METHODS: We studied 30 patients with drug-resistant focal epilepsy, 21 with TLE and 9 with ETLE. Two thirds of the patients were included in a previous report and for these, clinical and imaging data were updated and follow-up was extended. All patients underwent iEEG investigations (500 Hz high-pass filter and 2,000 Hz sampling rate), surgical resection, and postoperative magnetic resonance imaging (MRI). HFOs (ripples, 80-250 Hz; fast ripples, >250 Hz) were identified visually on a 5-10 min interictal iEEG sample. HFO rates inside versus outside the seizure-onset zone (SOZ), in resected versus nonresected tissue, and their association with surgical outcome (ILAE classification) were assessed in the entire cohort, and in the TLE and ETLE subgroups. We also tested the correlation of resected brain hippocampal and amygdala volumes (as measured on postoperative MRIs) with surgical outcome. KEY FINDINGS: HFO rates were significantly higher inside the SOZ than outside in the entire cohort and TLE subgroup, but not in the ETLE subgroup. In all groups, HFO rates did not differ significantly between resected and nonresected tissue. Surgical outcome was better when higher HFO rates were included in the surgical resection in the entire cohort and TLE subgroup, but not in the ETLE subgroup. Resected brain hippocampal and amygdala volumes were not correlated with surgical outcome. SIGNIFICANCE: In TLE, removal of HFO-generating areas may lead to improved surgical outcome. Less consistent findings emerge from ETLE, but these may be related to sample size limitations of this study. Size of resection, a factor that was ignored and that could have affected results of earlier studies did not influence results.


Assuntos
Relógios Biológicos/fisiologia , Mapeamento Encefálico , Ondas Encefálicas/fisiologia , Epilepsia do Lobo Temporal/fisiopatologia , Epilepsia do Lobo Temporal/cirurgia , Adulto , Eletroencefalografia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento , Adulto Jovem
13.
Brain Topogr ; 26(4): 627-40, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23793553

RESUMO

In EEG-fMRI studies, BOLD responses related to interictal epileptic discharges (IEDs) are most often the expected positive response (activation) but sometimes a surprising negative response (deactivation). The significance of deactivation in the region of IED generation is uncertain. The aim of this study was to determine if BOLD deactivation was caused by specific IED characteristics. Among focal epilepsy patients who underwent 3T EEG-fMRI from 2006 to 2011, those with negative BOLD having a maximum t-value in the IED generating region were selected. As controls, subjects with maximum activation in the IED generating region were selected. We established the relationship between the type of response (activation/deactivation) and (1) presence of slow wave in the IEDs, (2) lobe of epileptic focus, (3) occurrence as isolated events or bursts, (4) spatial extent of the EEG discharge. Fifteen patients with deactivation and 15 with activation were included. The IEDs were accompanied by a slow wave in 87 % of patients whose primary BOLD was a deactivation and only in 33 % of patients with activation. In the deactivation group, the epileptic focus was more frequently in the posterior quadrant and involved larger cortical areas, whereas in the activation group it was more frequently temporal. IEDs were more frequently of long duration in the deactivation group. The main factor responsible for focal deactivations is the presence of a slow wave, which is the likely electrographic correlate of prolonged inhibition. This adds a link to the relationship between electrophysiological and BOLD activities.


Assuntos
Encéfalo/fisiopatologia , Epilepsias Parciais/fisiopatologia , Adolescente , Adulto , Mapeamento Encefálico , Eletroencefalografia , Feminino , Hemodinâmica/fisiologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Oxigênio/sangue , Estudos Retrospectivos , Adulto Jovem
14.
J Neural Eng ; 20(3)2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37201515

RESUMO

Objective.Accurate localization, classification, and visualization of intracranial electrodes are fundamental for analyzing intracranial electrographic recordings. While manual contact localization is the most common approach, it is time-consuming, prone to errors, and is particularly challenging and subjective in low quality images, which are common in clinical practice. Automatically locating and interactively visualizing where each of the 100-200 individual contacts records in the brain is essential for understanding the neural origins of intracranial EEG.Approach.We introduced the SEEGAtlas plugin for the IBIS system, an open-source software platform for image-guided neurosurgery and multi-modal image visualization. SEEGAtlas extends IBIS functionalities to semi-automatically locate depth-electrode contact coordinates and automatically label the tissue type and anatomical region in which each contact is located. To illustrate the capabilities of SEEGAtlas and to validate the algorithms, clinical magnetic resonance images (MRIs) before and after electrode implantation of ten patients with depth electrodes implanted to localize the origin of their epileptic seizures were analyzed.Main Results. Visually identified contact coordinates were compared with the coordinates obtained by SEEGAtlas, resulting in a median difference of 1.4 mm. The agreement was lower for MRIs with weak susceptibility artifacts than for high-quality images. The tissue type was classified with 86% agreement with visual inspection. The anatomical region was classified as having a median agreement across patients of 82%.Significance. The SEEGAtlas plugin is user-friendly and enables accurate localization and anatomical labeling of individual contacts along implanted electrodes, together with powerful visualization tools. Employing the open-source SEEGAtlas results in accurate analysis of the recorded intracranial electroencephalography (EEG), even when only suboptimal clinical imaging is available. A better understanding of the cortical origin of intracranial EEG would help improve clinical interpretation and answer fundamental questions of human neuroscience.


Assuntos
Eletroencefalografia , Epilepsia , Humanos , Eletroencefalografia/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/cirurgia , Epilepsia/diagnóstico por imagem , Epilepsia/cirurgia , Eletrocorticografia , Eletrodos Implantados , Eletrodos , Imageamento por Ressonância Magnética/métodos
15.
Neuron ; 111(21): 3479-3495.e6, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37659409

RESUMO

What happens in the human brain when we are unconscious? Despite substantial work, we are still unsure which brain regions are involved and how they are impacted when consciousness is disrupted. Using intracranial recordings and direct electrical stimulation, we mapped global, network, and regional involvement during wake vs. arousable unconsciousness (sleep) vs. non-arousable unconsciousness (propofol-induced general anesthesia). Information integration and complex processing we`re reduced, while variability increased in any type of unconscious state. These changes were more pronounced during anesthesia than sleep and involved different cortical engagement. During sleep, changes were mostly uniformly distributed across the brain, whereas during anesthesia, the prefrontal cortex was the most disrupted, suggesting that the lack of arousability during anesthesia results not from just altered overall physiology but from a disconnection between the prefrontal and other brain areas. These findings provide direct evidence for different neural dynamics during loss of consciousness compared with loss of arousability.


Assuntos
Estado de Consciência , Propofol , Humanos , Estado de Consciência/fisiologia , Inconsciência/induzido quimicamente , Propofol/farmacologia , Encéfalo/fisiologia , Anestesia Geral , Eletroencefalografia
16.
Nat Biomed Eng ; 7(4): 576-588, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-34725508

RESUMO

Deficits in cognitive control-that is, in the ability to withhold a default pre-potent response in favour of a more adaptive choice-are common in depression, anxiety, addiction and other mental disorders. Here we report proof-of-concept evidence that, in participants undergoing intracranial epilepsy monitoring, closed-loop direct stimulation of the internal capsule or striatum, especially the dorsal sites, enhances the participants' cognitive control during a conflict task. We also show that closed-loop stimulation upon the detection of lapses in cognitive control produced larger behavioural changes than open-loop stimulation, and that task performance for single trials can be directly decoded from the activity of a small number of electrodes via neural features that are compatible with existing closed-loop brain implants. Closed-loop enhancement of cognitive control might remediate underlying cognitive deficits and aid the treatment of severe mental disorders.


Assuntos
Estimulação Encefálica Profunda , Humanos , Encéfalo , Próteses e Implantes , Cognição
17.
Nat Commun ; 14(1): 1748, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36991011

RESUMO

Ketamine produces antidepressant effects in patients with treatment-resistant depression, but its usefulness is limited by its psychotropic side effects. Ketamine is thought to act via NMDA receptors and HCN1 channels to produce brain oscillations that are related to these effects. Using human intracranial recordings, we found that ketamine produces gamma oscillations in prefrontal cortex and hippocampus, structures previously implicated in ketamine's antidepressant effects, and a 3 Hz oscillation in posteromedial cortex, previously proposed as a mechanism for its dissociative effects. We analyzed oscillatory changes after subsequent propofol administration, whose GABAergic activity antagonizes ketamine's NMDA-mediated disinhibition, alongside a shared HCN1 inhibitory effect, to identify dynamics attributable to NMDA-mediated disinhibition versus HCN1 inhibition. Our results suggest that ketamine engages different neural circuits in distinct frequency-dependent patterns of activity to produce its antidepressant and dissociative sensory effects. These insights may help guide the development of brain dynamic biomarkers and novel therapeutics for depression.


Assuntos
Ketamina , Propofol , Humanos , Ketamina/farmacologia , Ketamina/uso terapêutico , Propofol/farmacologia , N-Metilaspartato , Neurofisiologia , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Córtex Cerebral/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
18.
Epilepsia ; 53(5): 797-806, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22416973

RESUMO

PURPOSE: Many recent studies have reported the importance of high-frequency oscillations (HFOs) in the intracerebral electroencephalography (EEG) of patients with epilepsy. These HFOs have been defined as events that stand out from the background. We have noticed that this background often consists itself of high-frequency rhythmic activity. The purpose of this study is to perform a first evaluation of the characteristics of high-frequency continuous or semicontinuous background activity. METHODS: Because the continuous high-frequency pattern was noted mainly in mesial temporal structures, we reviewed the EEG studies from these structures in 24 unselected patients with electrodes implanted in these regions. Sections of background away from interictal spikes were marked visually during periods of slow-wave sleep and wakefulness. They were then high-passed filtered at 80 Hz and categorized as having high-frequency rhythmic activity in one of three patterns: continuous/semicontinuous, irregular, sporadic. Wavelet entropy, which measures the degree of rhythmicity of a signal, was calculated for the marked background sections. KEY FINDINGS: Ninety-six bipolar channels were analyzed. The continuous/semicontinuous pattern was found frequently (29/96 channels during wake and 34/96 during sleep). The different patterns were consistent between sleep and wakefulness. The continuous/semicontinuous pattern was found significantly more often in the hippocampus than in the parahippocampal gyrus and was rarely found in the amygdala. The types of pattern were not influenced by whether a channel was within the seizure-onset zone, or whether it was a lesional channel. The continuous/semicontinuous pattern was associated with a higher frequency of spikes and with high rates of ripples and fast ripples. SIGNIFICANCE: It appears that high-frequency activity (above 80 Hz) does not appear only in the form of brief paroxysmal events but also in the form of continuous rhythmic activity or very long bursts. In this study limited to mesial temporal structures, we found a clear anatomic preference for the hippocampus. Although associated with spikes and with distinct HFOs, this pattern was not clearly associated with the seizure-onset zone. Future studies will need to evaluate systematically the presence of this pattern, as it may have a pathophysiologic significance and it will also have an important influence on the very definition of HFOs.


Assuntos
Mapeamento Encefálico , Ondas Encefálicas/fisiologia , Epilepsias Parciais/patologia , Lobo Temporal/fisiopatologia , Adolescente , Adulto , Eletroencefalografia , Entropia , Epilepsias Parciais/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Sono/fisiologia , Gravação em Vídeo , Vigília/fisiologia , Adulto Jovem
19.
Brain Stimul ; 15(2): 491-508, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35247646

RESUMO

BACKGROUND: Electrical neuromodulation via direct electrical stimulation (DES) is an increasingly common therapy for a wide variety of neuropsychiatric diseases. Unfortunately, therapeutic efficacy is inconsistent, likely due to our limited understanding of the relationship between the massive stimulation parameter space and brain tissue responses. OBJECTIVE: To better understand how different parameters induce varied neural responses, we systematically examined single pulse-induced cortico-cortico evoked potentials (CCEP) as a function of stimulation amplitude, duration, brain region, and whether grey or white matter was stimulated. METHODS: We measured voltage peak amplitudes and area under the curve (AUC) of intracranially recorded stimulation responses as a function of distance from the stimulation site, pulse width, current injected, location relative to grey and white matter, and brain region stimulated (N = 52, n = 719 stimulation sites). RESULTS: Increasing stimulation pulse width increased responses near the stimulation location. Increasing stimulation amplitude (current) increased both evoked amplitudes and AUC nonlinearly. Locally (<15 mm), stimulation at the boundary between grey and white matter induced larger responses. In contrast, for distant sites (>15 mm), white matter stimulation consistently produced larger responses than stimulation in or near grey matter. The stimulation location-response curves followed different trends for cingulate, lateral frontal, and lateral temporal cortical stimulation. CONCLUSION: These results demonstrate that a stronger local response may require stimulation in the grey-white boundary while stimulation in the white matter could be needed for network activation. Thus, stimulation parameters tailored for a specific anatomical-functional outcome may be key to advancing neuromodulatory therapy.


Assuntos
Córtex Cerebral , Substância Branca , Encéfalo , Córtex Cerebral/fisiologia , Estimulação Elétrica/métodos , Potenciais Evocados/fisiologia , Humanos
20.
Ann Neurol ; 67(2): 209-20, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20225281

RESUMO

OBJECTIVE: High-frequency oscillations (HFOs) in the intracerebral electroencephalogram (EEG) have been linked to the seizure onset zone (SOZ). We investigated whether HFOs can delineate epileptogenic areas even outside the SOZ by correlating the resection of HFO-generating areas with surgical outcome. METHODS: Twenty patients who underwent a surgical resection for medically intractable epilepsy were studied. All had presurgical intracerebral EEG (500Hz filter and 2,000Hz sampling rate), at least 12-month postsurgical follow-up, and a postsurgical magnetic resonance imaging (MRI). HFOs (ripples, 80-250Hz; fast ripples, >250Hz) were identified visually during 5 to 10 minutes of slow-wave sleep. Rates and extent of HFOs and interictal spikes in resected versus nonresected areas, assessed on postsurgical MRIs, were compared with surgical outcome (Engel's classification). We also evaluated the predictive value of removing the SOZ in terms of surgical outcome. RESULTS: The mean duration of follow-up was 22.7 months. Eight patients had good (Engel classes 1 and 2) and 12 poor (classes 3 and 4) surgical outcomes. Patients with a good outcome had a significantly larger proportion of HFO-generating areas removed than patients with a poor outcome. No such difference was seen for spike-generating regions or the SOZ. INTERPRETATION: The correlation between removal of HFO-generating areas and good surgical outcome indicates that HFOs could be used as a marker of epileptogenicity and may be more accurate than spike-generating areas or the SOZ. In patients in whom the majority of HFO-generating tissue remained, a poor surgical outcome occurred.


Assuntos
Relógios Biológicos/fisiologia , Encéfalo/cirurgia , Epilepsia/fisiopatologia , Epilepsia/cirurgia , Adulto , Encéfalo/fisiopatologia , Eletrodos Implantados , Eletroencefalografia/métodos , Epilepsia/patologia , Feminino , Seguimentos , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Procedimentos Neurocirúrgicos/métodos , Estudos Retrospectivos , Processamento de Sinais Assistido por Computador , Resultado do Tratamento , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA