Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
2.
Gels ; 9(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36826330

RESUMO

Ambient pressure drying (APD) can prospectively reduce the costs of aerogel fabrication and processing. APD relies solely on preventing shrinkage or making it reversible. The latter, i.e., the aerogel re-expansion after drying (so-called springback effect-SBE), needs to be controlled for reproducible aerogel fabrication by APD. This can be achieved by an appropriate surface functionalization of aerogel materials (e.g., SiO2). This work addresses the fabrication of monolithic SiO2 aerogels and xerogels by APD. The effect of several silylation agents, i.e., trimethylchlorosilane, triethylchlorosilane, and hexamethyldisilazane on the SBE is studied in detail, applying several complementary experimental techniques, allowing the evaluation of the macroscopic and microscopic morphology as well as the composition of SiO2 aerogels. Here, we show that some physical properties, e.g., the bulk density, the macroscopic structure, and pore sizes/volumes, were significantly affected by the re-expansion. However, silylation did not necessarily lead to full re-expansion. Therefore, similarities in the molecular composition could not be equated to similarities in the SBE. The influences of steric hindrance and reactivity are discussed. The impact of silylation is crucial in tailoring the SBE and, as a result, the APD of monolithic aerogels.

3.
Nanoscale Adv ; 6(1): 111-125, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38125596

RESUMO

Ambient pressure drying (APD) allows for synthesizing aerogels without expensive and sophisticated equipment for achieving supercritical conditions. Since APD does not eliminate the capillary stress that is induced by the liquid/vapour phase boundary, the shrinkage during drying needs to be prevented or reversed. The re-expansion of the silylated silica gels during drying is commonly referred to as the springback effect (SBE). The SBE is not only important for producing aerogels via APD, but is also a fascinating phenomenon, since it is accompanied by a significant volume change unusual for rigid ceramics. Synchrotron X-ray scattering has proven to be especially effective for the investigation of the volume change of these fractal silica structures on different length scales. In this work, we follow the drying, shrinkage, and (partial) re-expansion of various monolithic samples in situ to explore the occurrence of the SBE. For this purpose, various silylation agents, i.e., hexamethyldisilazane, trimethylchlorosilane, and triethylchlorosilane were used to investigate different shrinkage and re-expansion behavior. A scattering model was used to extract additional information of the evolving primary particle size, correlation length, fractal dimension, and other intensity contributions of the silica network and the hexane. While the primary particles pointed towards a relaxation at near molecular size, they were likely not involved in the SBE. However, structures near the size of the correlation length could be essential for the occurrence of this phenomenon. These findings may lead to the origin of this interesting phenomenon, as well as a better understanding of the production of APD aerogels.

4.
Sci Rep ; 12(1): 7537, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35534488

RESUMO

The springback effect during ambient pressure drying of aerogels is an interesting structural phenomenon, consisting of a severe shrinkage followed by almost complete re-expansion. The drying of gels causes shrinkage, whereas re-expansion is believed to be linked to repelling forces on the nanoscale. A multi-scale structural characterization of this significant volume change is key in controlling aerogel processing and properties. In this work, hydrophobic, monolithic silica aerogels with high specific surface areas were synthesized by modification with trimethylchlorosilane and ambient pressure drying. Here, we report a multi-method approach focusing on in-situ X-ray scattering to observe alterations of the nanostructured material during the drying of surface-modified and unmodified silica gels. Both show a porous fractal nanostructure, which partially collapses during drying and only recovers in surface-modified samples during the springback effect. Distinct changes of the X-ray scattering data were reproducibly associated with the shrinkage, re-expansion and drying of the gel network. Our findings may contribute to tailor aerogels with specific functionality, as the springback effect has a direct influence on properties (e.g., porosity, pore size distribution), which is directly affected by the degree of re-expansion.

5.
Materials (Basel) ; 14(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34361434

RESUMO

Macromolecular assembly into complex morphologies and architectural shapes is an area of fundamental research and technological innovation. In this work, we investigate the self-assembly process of recombinantly produced protein inspired by spider silk (spidroin). To elucidate the first steps of the assembly process, we examined highly concentrated and viscous pendant droplets of this protein in air. We show how the protein self-assembles and crystallizes at the water-air interface into a relatively thick and highly elastic skin. Using time-resolved in situ synchrotron x-ray scattering measurements during the drying process, we showed that the skin evolved to contain a high ß-sheet amount over time. We also found that ß-sheet formation strongly depended on protein concentration and relative humidity. These had a strong influence not only on the amount, but also on the ordering of these structures during the ß-sheet formation process. We also showed how the skin around pendant droplets can serve as a reservoir for attaining liquid-liquid phase separation and coacervation from the dilute protein solution. Essentially, this study shows a new assembly route which could be optimized for the synthesis of new materials from a dilute protein solution and determine the properties of the final products.

6.
RSC Adv ; 10(52): 31180-31186, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-35520646

RESUMO

Mullite is a promising material for advanced ceramic applications. The synthesis of mullite from oxides requires very high temperatures (T > 1000 °C). Here highly crystalline mullite whiskers with an average length and diameter of 2.37 ± 1.7 µm and 0.18 ± 0.11 µm, respectively, were synthesized by a fluoride-assisted method from aluminium sulfate, aluminium fluoride and fumed silica at a temperature as low as 800 °C.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA