Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 24(19): 5754-5760, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38708987

RESUMO

Two-dimensional (2D) FenGeTe2, with n = 3, 4, and 5, has been realized in experiments, showing strong magnetic anisotropy with enhanced critical temperature (Tc). The understanding of its magnetic anisotropy is crucial for the exploration of more stable 2D magnets and its spintronic applications. Here, we report a quantitative reconstruction of the magnetization magnitude and its direction in ultrathin Fe4GeTe2 using nitrogen vacancy centers. Through imaging stray magnetic fields, we identified the spin-flop transition at approximately 80 K, resulting in a change of the easy axis from the out-of-plane direction to the in-plane direction. Moreover, by analyzing the thermally activated escape behavior of the magnetization near Tc in terms of the Ginzburg-Landau model, we observed the in-plane magnetic anisotropy effect and the formation capability of magnetic domains at ∼0.4 µm2 µT-1. Our findings contribute to the quantitative understanding of the magnetic anisotropy effect in a vast range of 2D van der Waals magnets.

2.
Nat Commun ; 15(1): 4556, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811549

RESUMO

The universal flexoelectric effect in solids provides a mechanical pathway for controlling electric polarization in ultrathin ferroelectrics, eliminating potential material breakdown from a giant electric field at the nanoscale. One challenge of this approach is arbitrary implementation, which is strongly hindered by one-way switching capability. Here, utilizing the innate flexibility of van der Waals materials, we demonstrate that ferroelectric polarization and domain structures can be mechanically, reversibly, and arbitrarily switched in two-dimensional CuInP2S6 via the nano-tip imprinting technique. The bidirectional flexoelectric control is attributed to the extended tip-induced deformation in two-dimensional systems with innate flexibility at the atomic scale. By employing an elastic substrate, artificial ferroelectric nanodomains with lateral sizes as small as ~80 nm are noninvasively generated in an area of 1 µm2, equal to a density of 31.4 Gbit/in2. Our results highlight the potential applications of van der Waals ferroelectrics in data storage and flexoelectronics.

3.
Nat Commun ; 15(1): 4619, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816431

RESUMO

Since the first report on single-layer MoS2 based transistor, rapid progress has been achieved in two-dimensional (2D) material-based atomically thin electronics, providing an alternative approach to solve the bottleneck in silicon device miniaturization. In this scenario, reliable contact between the metal electrodes and the subnanometer-thick 2D materials becomes crucial in determining the device performance. Here, utilizing the quasi-van der Waals (vdW) epitaxy of metals on fluorophlogopite mica, we demonstrate an all-stacking method for the fabrication of 2D devices with high-quality vdW contacts by mechanically transferring pre-deposited metal electrodes. This technique is applicable for complex device integration with sizes up to the wafer scale and is also capable of tuning the electric characteristics of the interfacial junctions by transferring selective metals. Our results provide an efficient, scalable, and low-cost technique for 2D electronics, allowing high-density device integration as well as a handy tool for fundamental research in vdW materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA