Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Mol Genet Metab Rep ; 39: 101067, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38433930

RESUMO

Congenital disorder of glycosylation type Ia (CDG-Ia) is an autosomal recessive genetic disease caused by a mutation in the phosphomannomutase 2 (PMM2) gene. We have identified a 13-month-old boy who has been diagnosed with CDG-Ia. He displays several characteristic symptoms, including cerebellar hypoplasia, severe developmental retardation, hypothyroidism, impaired liver function, and abnormal serum ferritin levels. Through whole-exome sequencing, we discovered novel complex heterozygous mutations in the PMM2 gene, specifically the c.663C > G (p.F221L) mutation and loss of exon 2. Further analysis revealed that the enzymatic activity of the mutant PMM2 protein was significantly reduced by 44.97% (p < 0.05) compared to the wild-type protein.

2.
Front Physiol ; 14: 1131201, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153222

RESUMO

Ferroptosis represents a novel non-apoptotic form of regulated cell death that is driven by iron-dependent lipid peroxidation and plays vital roles in various diseases including cardiovascular diseases, neurodegenerative disorders and cancers. Plenty of iron metabolism-related proteins, regulators of lipid peroxidation, and oxidative stress-related molecules are engaged in ferroptosis and can regulate this complex biological process. Sirtuins have broad functional significance and are targets of many drugs in the clinic. Recently, a growing number of studies have revealed that sirtuins can participate in the occurrence of ferroptosis by affecting many aspects such as redox balance, iron metabolism, and lipid metabolism. This article reviewed the studies on the roles of sirtuins in ferroptosis and the related molecular mechanisms, highlighting valuable targets for the prevention and treatment of ferroptosis-associated diseases.

3.
Cell Transplant ; 32: 9636897231180128, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37318186

RESUMO

Asthma is a complex and heterogeneous disease characterized by chronic airway inflammation, airway hyperresponsiveness, and airway remodeling. Most asthmatic patients are well-established using standard treatment strategies and advanced biologicals. However, a small group of patients who do not respond to biological treatments or are not effectively controlled by available treatment strategies remain a clinical challenge. Therefore, new therapies are urgently needed for poorly controlled asthma. Mesenchymal stem/stromal cells (MSCs) have shown therapeutic potential in relieving airway inflammation and repairing impaired immune balance in preclinical trials owing to their immunomodulatory abilities. Noteworthy, MSCs exerted a therapeutic effect on steroid-resistant asthma with rare side effects in asthmatic models. Nevertheless, adverse factors such as limited obtained number, nutrient and oxygen deprivation in vitro, and cell senescence or apoptosis affected the survival rate and homing efficiency of MSCs, thus limiting the efficacy of MSCs in asthma. In this review, we elaborate on the roles and underlying mechanisms of MSCs in the treatment of asthma from the perspective of their source, immunogenicity, homing, differentiation, and immunomodulatory capacity and summarize strategies to improve their therapeutic effect.


Assuntos
Asma , Células-Tronco Mesenquimais , Humanos , Asma/terapia , Apoptose , Diferenciação Celular , Inflamação
4.
Gene ; 879: 147587, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37364699

RESUMO

Asthma, a prevalent disease characterized by innate and adaptive immune responses, has been associated with several risk factors including miR-146a. To better understand the potential impact of miR-146a SNPs on asthma susceptibility and clinical features in Southern Chinese Han population, we conducted a case-control to analyze two functional SNPs (rs2910164 and rs57095329) of the miR-146a (394 patients with asthma and 395 healthy controls). Our findings suggest that the rs2910164 C/G genotype may increase the risk for asthma in females, while the rs57095329 G/G genotype may be involved in the regulation of clinical characteristics of males with asthma. In addition, we demonstrated that the SNPs rs2910164 C/G and rs57095329 A/G variations functionally affected the miR-146a levels in patients with asthma, and may alter structure of miR-146a. Our data are the first to suggest that miR-146a SNPs may be significantly associated with onset asthma in Southern Chinese Han population. Our studies may provide new insight into the potential significance of miR-146a SNPs in asthma.


Assuntos
MicroRNAs , Polimorfismo de Nucleotídeo Único , Feminino , Humanos , Masculino , Estudos de Casos e Controles , População do Leste Asiático , Predisposição Genética para Doença , Genótipo , MicroRNAs/genética
5.
Behav Brain Res ; 443: 114353, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-36822513

RESUMO

BACKGROUND: Emerging evidence suggests that the DOCK4 gene increases susceptibility to schizophrenia. However, no study has hitherto repeated this association in Chinese, and further investigated the relationship between DOCK4 and clinical symptoms in schizophrenic patients using clinical scales and functional magnetic resonance imaging (fMRI). METHODS: In this study, we genotyped three single nucleotide polymorphisms (SNPs) (rs2074127, rs2217262, and rs2074130) within the DOCK4 gene using a case-control design (including 1289 healthy controls and 1351 patients with schizophrenia). 55 first-episode schizophrenia (FES) patients and 59 healthy participants were divided by the genotypes of rs2074130 into CC and CT+TT groups. We further investigated the association with clinical symptoms and neural characteristics (brain activation/connectivity and nodal network metrics). RESULTS: Our results showed significant associations between all selected SNPs and schizophrenia (all P < 0.05). In patients, letter fluency and motor speed scores of T allele carriers were significantly higher than the CC group (all P < 0.05). Interestingly, greater brain activity, functional connectivity, and betweenness centrality (BC) in language processing and motor coordination were also observed in the corresponding brain zones in patients with the T allele based on a two-way ANCOVA model. Moreover, a potential positive correlation was found between brain activity/connectivity of these brain regions and verbal fluency and motor speed. CONCLUSION: Our findings suggest that the DOCK4 gene may contribute to the onset of schizophrenia and lead to language processing and motor coordination dysfunction in this patient population from China.


Assuntos
Proteínas Ativadoras de GTPase , Esquizofrenia , Humanos , População do Leste Asiático , Variação Genética , Proteínas Ativadoras de GTPase/genética , Imageamento por Ressonância Magnética/métodos , Neuroimagem , Polimorfismo de Nucleotídeo Único , Esquizofrenia/genética
6.
Front Endocrinol (Lausanne) ; 13: 1039919, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36619567

RESUMO

Background: The published findings on the link between the resistin (RETN) gene polymorphism and type 2 diabetes mellitus (T2DM) risk are still contradictory. Here, through a meta-analysis, we summarized a more precise evaluation of their connection by synthesizing existing research. Methods: PubMed, Google Scholar, and Web of Science were electronically searched, and all cited sources were manually searched. The heterogeneity of effects was tested and all statistical analyses were performed in Stata 12.0. Results: A total of 23 studies with 10,651 cases and 14,366 controls on RETN -420C/G polymorphism were included. The overall results showed that the association of RETN -420C/G polymorphism and T2DM susceptibility was not significant [for the allelic model: odds ratio (OR) = 0.98, 95% confidence interval (CI) = 0.87-1.10, pheterogeneity <.001; I 2 = 84.6%; for the dominant model: OR = 0.96, 95% CI = 0.80-1.15, pheterogeneity <.001; I 2 = 87.1%; and for the recessive model: OR = 0.96, 95% CI = 0.82-1.12, pheterogeneity <.001; I 2 = 56.9%] but with high heterogeneity across studies (p <.0001). Meta-regression found that the median age of T2DM participants (using age 50 as the cutoff) could be a factor in the observed variation. The RETN -420C/G polymorphism seems to be linked to an increased risk of T2DM in younger individuals [for dominant: OR = 0.84 (95% CI, 0.72-0.98; pheterogeneity <.001; I 2 = 80.9%)] and decreased risk in older people [for dominant: OR = 3.14 (95% CI, 2.35-4.19; pheterogeneity = .98; I 2 = 0.0%)]. Conclusions: Current results found no evidence that the RETN -420C/G variant was linked to T2DM susceptibility, but the patient's age appears to be a potential factor that contributed to high heterogeneity across studies. Additional high-quality and well-designed investigations are required to confirm these results.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Idoso , Pessoa de Meia-Idade , Diabetes Mellitus Tipo 2/genética , Resistina/genética , Polimorfismo de Nucleotídeo Único , Suscetibilidade a Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA