Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Acta Pharmacol Sin ; 43(3): 659-671, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34103688

RESUMO

Tubulointerstitial inflammation plays an important role in the progression of diabetic nephropathy (DN), and tubular epithelial cells (TECs) are crucial promoters of the inflammatory cascade. Exchange protein activated by cAMP (Epac) has been shown to suppress the angiotensin II (Ang-II)-induced release of inflammatory cytokines in tubular cells. However, the role of Epac in TEC-mediated tubulointerstitial inflammation in DN remains unknown. We found that administering the Epac agonist 8-pCPT-2'-O-Me-cAMP (8-O-cAMP) to db/db mice inhibited tubulointerstitial inflammation characterized by macrophage infiltration and increased inflammatory cytokine release and consequently alleviated tubulointerstitial fibrosis in the kidney. Furthermore, 8-O-cAMP administration restored CCAAT/enhancer binding protein ß (C/EBP-ß) expression and further upregulated the expression of Suppressor of cytokine signaling 3 (SOCS3), while inhibiting p-STAT3, MCP-1, IL-6, and TNF-α expression in the kidney cortex in db/db mice. And in vitro study showed that macrophage migration and MCP-1 expression induced by high glucose (HG, 30 mM) were notably reduced by 8-O-cAMP in human renal proximal tubule epithelial (HK-2) cells. In addition, 8-O-cAMP treatment restored C/EBP-ß expression in HK-2 cells and promoted C/EBP-ß translocation to the nucleus, where it transcriptionally upregulated SOCS3 expression, subsequently inhibiting STAT3 phosphorylation. Under HG conditions, siRNA-mediated knockdown of C/EBP-ß or SOCS3 in HK-2 cells partially blocked the inhibitory effect of Epac activation on the release of MCP-1. In contrast, SOCS3 overexpression inhibited HG-induced activation of STAT3 and MCP-1 expression in HK-2 cells. These findings indicate that Epac activation via 8-O-cAMP ameliorates tubulointerstitial inflammation in DN through the C/EBP-ß/SOCS3/STAT3 pathway.


Assuntos
Nefropatias Diabéticas/patologia , Fatores de Troca do Nucleotídeo Guanina/agonistas , Inflamação/patologia , Túbulos Renais/efeitos dos fármacos , Animais , Proteína beta Intensificadora de Ligação a CCAAT/efeitos dos fármacos , AMP Cíclico/análogos & derivados , AMP Cíclico/farmacologia , Citocinas/efeitos dos fármacos , Humanos , Mediadores da Inflamação/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Aleatória , Fator de Transcrição STAT3/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteína 3 Supressora da Sinalização de Citocinas/efeitos dos fármacos , Regulação para Cima
2.
Circ Res ; 120(10): 1584-1597, 2017 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-28298295

RESUMO

RATIONALE: Hypertension remains to be a global public health burden and demands novel intervention strategies such as targeting T cells and T-cell-derived cytokines. Mineralocorticoid receptor (MR) antagonists have been clinically used to treat hypertension. However, the function of T-cell MR in blood pressure (BP) regulation has not been elucidated. OBJECTIVE: We aim to determine the role of T-cell MR in BP regulation and to explore the mechanism. METHODS AND RESULTS: Using T-cell MR knockout mouse in combination with angiotensin II-induced hypertensive mouse model, we demonstrated that MR deficiency in T cells strikingly decreased both systolic and diastolic BP and attenuated renal and vascular damage. Flow cytometric analysis showed that T-cell MR knockout mitigated angiotensin II-induced accumulation of interferon-gamma (IFN-γ)-producing T cells, particularly CD8+ population, in both kidneys and aortas. Similarly, eplerenone attenuated angiotensin II-induced elevation of BP and accumulation of IFN-γ-producing T cells in wild-type mice. In cultured CD8+ T cells, T-cell MR knockout suppressed IFN-γ expression whereas T-cell MR overexpression and aldosterone both enhanced IFN-γ expression. At the molecular level, MR interacted with NFAT1 (nuclear factor of activated T-cells 1) and activator protein-1 in T cells. Finally, T-cell MR overexpressing mice manifested more elevated BP compared with control mice after angiotensin II infusion and such difference was abolished by IFN-γ-neutralizing antibodies. CONCLUSIONS: MR may interact with NFAT1 and activator protein-1 to control IFN-γ in T cells and to regulate target organ damage and ultimately BP. Targeting MR in T cells specifically may be an effective novel approach for hypertension treatment.


Assuntos
Pressão Sanguínea/fisiologia , Interferon gama/fisiologia , Receptores de Mineralocorticoides/fisiologia , Linfócitos T/fisiologia , Acetilcolina/farmacologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Hipertensão/genética , Hipertensão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
3.
EMBO Mol Med ; 11(11): e9127, 2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31532577

RESUMO

The function of nuclear receptor corepressor 1 (NCoR1) in cardiomyocytes is unclear, and its physiological and pathological implications are unknown. Here, we found that cardiomyocyte-specific NCoR1 knockout (CMNKO) mice manifested cardiac hypertrophy at baseline and had more severe cardiac hypertrophy and dysfunction after pressure overload. Knockdown of NCoR1 exacerbated whereas overexpression mitigated phenylephrine-induced cardiomyocyte hypertrophy. Mechanistic studies revealed that myocyte enhancer factor 2a (MEF2a) and MEF2d mediated the effects of NCoR1 on cardiomyocyte hypertrophy. The receptor interaction domains (RIDs) of NCoR1 interacted with MEF2a to repress its transcriptional activity. Furthermore, NCoR1 formed a complex with MEF2a and class IIa histone deacetylases (HDACs) to suppress hypertrophy-related genes. Finally, overexpression of RIDs of NCoR1 in the heart attenuated cardiac hypertrophy and dysfunction induced by pressure overload. In conclusion, NCoR1 cooperates with MEF2 and HDACs to repress cardiac hypertrophy. Targeting NCoR1 and the MEF2/HDACs complex may be an attractive therapeutic strategy to tackle pathological cardiac hypertrophy.


Assuntos
Cardiomegalia/fisiopatologia , Regulação da Expressão Gênica , Miócitos Cardíacos/fisiologia , Correpressor 1 de Receptor Nuclear/metabolismo , Animais , Técnicas de Silenciamento de Genes , Técnicas de Inativação de Genes , Redes Reguladoras de Genes , Humanos , Fatores de Transcrição MEF2/metabolismo , Camundongos , Camundongos Knockout , Correpressor 1 de Receptor Nuclear/deficiência , Ligação Proteica , Mapeamento de Interação de Proteínas
4.
Hypertension ; 70(1): 137-147, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28559389

RESUMO

Although antagonists of mineralocorticoid receptor (MR) have been widely used to treat heart failure, the underlying mechanisms are incompletely understood. Recent reports show that T cells play important roles in pathologic cardiac hypertrophy and heart failure. However, it is unclear whether and how MR functions in T cells under these pathologic conditions. We found that MR antagonist suppressed abdominal aortic constriction-induced cardiac hypertrophy and decreased the accumulation and activation of CD4+ and CD8+ T cells in mouse heart. T-cell MR knockout mice manifested suppressed cardiac hypertrophy, fibrosis, and dysfunction compared with littermate control mice after abdominal aortic constriction. T-cell MR knockout mice had less cardiac inflammatory response, which was illustrated by decreased accumulation of myeloid cells and reduced expression of inflammatory cytokines. Less amounts and activation of T cells were observed in the heart of T-cell MR knockout mice after abdominal aortic constriction. In vitro studies showed that both MR antagonism and deficiency repressed activation of T cells, whereas MR overexpression elevated activation of T cells. These results demonstrated that MR blockade in T cells protected against abdominal aortic constriction-induced cardiac hypertrophy and dysfunction. Mechanistically, MR directly regulated T-cell activation and modulated cardiac inflammation. Targeting MR in T cells specifically may be a feasible strategy for more effective treatment of pathologic cardiac hypertrophy and heart failure.


Assuntos
Cardiomegalia/metabolismo , Insuficiência Cardíaca/metabolismo , Antagonistas de Receptores de Mineralocorticoides , Receptores de Mineralocorticoides/metabolismo , Linfócitos T/fisiologia , Animais , Aorta/metabolismo , Aorta/fisiopatologia , Cardiomegalia/etiologia , Cardiomegalia/fisiopatologia , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/fisiopatologia , Camundongos , Camundongos Knockout , Antagonistas de Receptores de Mineralocorticoides/metabolismo , Antagonistas de Receptores de Mineralocorticoides/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA