Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Environ Res ; 249: 118344, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38311200

RESUMO

More and more previously designed wastewater treatment plants (WWTPs) are upgraded to tertiary treatment to meet the higher effluent discharge standards of conventional pollutants. Contaminants of emerging concern (CECs) can cause adverse effects on organisms and usually flow into WWTPs along with urban sewage. How the retrofitted WWTPs targeting conventional pollutants will influence the treatment efficiency of CECs is seldom discussed. This study investigates the removal of CECs in two full-scale newly retrofitted WWTPs (CD and JM WWTPs), containing high-efficiency sedimentation tank and denitrification deep bed filter for enhancing total nitrogen removal. The overall CEC removal efficiencies in the CD and JM WWTPs were 73.79 % and 93.63 %, respectively. Mass balance results indicated that CD WWTP and JM WWTP release a total of 36.89 and 88.58 g/d of CECs into the environment through effluent and excess sludge, respectively. Analysis of the concentration of CECs along the treatment process revealed most CECs were removed in the biological treatment units. The incorporation of newly constructed tertiary treatment proved beneficial for CEC removal and removed 2.93 % and 2.36 % CECs, corresponding to CEC removal of 2.92 and 27.49 g/d in the CD and JM WWTPs, respectively. The data of this study were further used to evaluate the suitability of the SimpleTreat model for simulating the fate of CECs in WWTPs. The predicted fraction of CECs discharged through the biological treatment effluent were generally within ten-fold difference from the measured results, highlighting its potential for estimating CEC removal in WWTPs.


Assuntos
Nitrogênio , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Nitrogênio/análise , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Águas Residuárias/análise
2.
J Environ Manage ; 338: 117774, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-36989953

RESUMO

Microcystin-LR (MC-LR), a type of cyanotoxin commonly found in natural water bodies (sources of drinking water), poses a threat to human health due to its high toxicity. It is essential to successfully remove this cyanotoxin from drinking water sources. In this study, chlorine was used to oxidize MC-LR in Milli-Q water (MQ) (control test) and natural water collected from Lake Longhu (LLW) as a drinking water source. The removal efficiency, proposed transformation pathways, and genotoxicity were investigated. In the chlorine dose range investigated (4.0 mg L-1 - 8.0 mg L-1), the apparent second-order rate constants for MC-LR chlorination varied from 21.3 M-1s-1 to 31.9 M-1s-1 in MQ, higher than that in LLW (9.06 M-1s-1 to 17.7 M-1s-1) due to a faster chlorine decay attributed to the water matrix (e.g., natural organic matter) of LLW. Eleven transformation products (TPs) of MC-LR were identified in the two waters. The conjugated diene moieties and benzene ring of Adda moiety (3-amino-9-methoxy-2,6,8-trimethyl-10-phenyldeca-4,6-dienoic acid), and the double bond of Mdha moiety (N-methyldehydroalanine) were the major susceptible reaction sites. Attacking unsaturated bonds by hydroxyl and chlorine radicals to generate monochloro-hydroxy-MC-LR was the primary initial transformation pathway, followed by nucleophilic substitution, dehydration, and cleavage in MC-LR. Chlorine substitution on the benzene ring was also observed. Based on the bacterial reverse-mutation assay (Ames assay), TPs in treated natural water did not induce genotoxicity/mutagenicity. These findings shed light on the role of chlorination in controlling the risk of cyanotoxins in drinking water treatment plants.


Assuntos
Água Potável , Purificação da Água , Humanos , Halogenação , Cloro , Benzeno , Microcistinas/química , Microcistinas/toxicidade , Cinética
3.
Water Res ; 212: 118120, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35114530

RESUMO

The distribution and fate of contaminants of emerging concern (CECs) was studied in relation to hydrological conditions, land use characteristics, and spatial contiguity in Houxi River. Thirty-four CECs were detected in the surface water during a three-year sampling campaign. Caffeine was most prevalent (99% frequency), while bisphenol A had the highest median concentration (78.2 ng/L) among the detected CECs. Caffeine and the other prevalent CECs lincomycin and bisphenol A, with median concentrations of 3.89 ng/L, 0.26 ng/L, and 78.2 ng/L, respectively, were positively correlated with land use types related to anthropogenic activities (grass, barren, built up, and cropland areas and landscape indexes for human activities). The analysis of similarities revealed significant annual variations, with increasing trends in both the concentrations and detection frequencies of CECs. Spatial variations were demonstrated by higher concentrations and detection frequencies downstream compared to upstream. The singular value decomposition analysis revealed that the downstream sites were the major contributors (55.6%-100%) to the spatial variability of most CECs. Moran's I analysis based on downstream contiguity indicated strong spatial autocorrelation among the connected sites for most CECs. This was further supported by longer correlation lengths for 18 CECs than the average distance between the sampling sites. The spatial autocorrelation can be attributed to the physicochemical properties of CECs and local hydrological dynamics, including temperature, wind speed, and sunshine hours. For most CECs, local contribution predominated over neighbor influence with an average value of 75.5%. The results of this study provide new insight to evaluate CEC distributions, which will be beneficial to policymakers for the management and prioritization of CEC contaminants in the Houxi watershed.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água , Humanos , Rios , Análise Espacial , Águas Residuárias , Poluentes Químicos da Água/análise
4.
FEMS Microbiol Ecol ; 98(11)2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36264286

RESUMO

Bacteria communities, as key drivers of energy flow and nutrient recycling in rivers, usually consist of a few abundant taxa and many rare taxa. During the last decades, rivers on the Tibetan Plateau have experienced dramatic land surface changes under climate change and anthropogenic disturbances. However, the responses of abundant and rare taxa to such changes and disturbances still remains unclear. In this study, we explored the biogeography and drivers of the abundant and rare bacteria in Yarlung Tsangpo River sediments on the Tibetan Plateau. Our study demonstrated that changes in surrounding land-use patterns, especially in forest land, bare land and cropland, had profound influences on the distribution of the abundant and rare sediment bacteria in the Yarlung Tsangpo River. Although both communities exhibited significant distance-decay patterns, dispersal limitation was the dominant process in the abundant community, while the rare community was mainly driven by heterogeneous selection. Our results also revealed that the abundant bacteria exhibited stronger adaptation across environmental gradients than the rare bacteria. The similar biogeographic patterns but contrasting assembly processes in abundant and rare communities may result from the differences in their environmental adaptation processes. This work provides valuable insights into the importance of land surface changes in influencing the biogeographic patterns of bacteria in fluvial sediments, which helps to predict their activities and patterns in Tibetan rivers under future global climate change and anthropogenic disturbances.


Assuntos
Bactérias , Rios , Rios/microbiologia , Bactérias/genética , Mudança Climática
5.
Anal Methods ; 13(3): 299-310, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33399138

RESUMO

A convenient, effective, and low-cost method was developed for the determination of 38 pharmaceuticals and personal care products (PPCPs), including 19 antibiotics in surface water samples by lyophilization combined with liquid chromatography-tandem quadrupole mass spectrometry (LC-MS/MS). The components of the extraction solvent, the volume of the water sample, and the volume of extraction solvent were successively optimized. The analytes in 80 mL water samples were concentrated by lyophilization, eluted effectively by the solvent of 2 mL acetonitrile, 2 mL acetone, and 2 mL ultrapure water. The method detection limits ranged from 0.02 ng L-1 (caffeine) to 0.17 µg L-1 (glibenclamide). The recoveries of 30 analytes ranged from 40.0% (sulfaguanidine) to 124.4% (flumequine). The relative standard deviations of all analytes were below 21% except ciprofloxacin (29%). The performance of the optimized method was comparable to the solid phase extraction and ultrasonic extraction method with much less consumption of labor, organic solvent, and consumables. The developed method was successfully applied to surface river water, reservoir water, and effluent of the wastewater treatment plant.


Assuntos
Cosméticos , Preparações Farmacêuticas , Poluentes Químicos da Água , Cromatografia Líquida , Cosméticos/análise , Liofilização , Espectrometria de Massas em Tandem , Água , Poluentes Químicos da Água/análise
6.
Artigo em Inglês | MEDLINE | ID: mdl-32305705

RESUMO

A simultaneous extraction and cleanup method was optimized and validated for the determination of 40 antibiotics from cephalosporin, fluoroquinolone, lincosamide, macrolide, nitroimidazole, quinolone, sulfonamide and tetracycline groups in sediments by liquid chromatography with tandem quadrupole mass spectrometry (LC-MS/MS). The method involved hydration of freeze-dried sediment sample (2.0 g) with 2.5 ml of 0.1 M Na-EDTA McIlvaine buffer and extraction with 5 ml of MeOH and MeCN (1:3 v/v) followed by dispersive solid phase extraction by using 100 mg mix of C18 and PSA (1:2 w/w) and 50 mg MgSO4 prior to LC-MS/MS analysis. The method was validated for 10, 20, 50 and 100 µg/kg spiking levels by using blank sediment sample obtained from a drinking water reservoir according to the guidelines of European Commission Decision (2002) 2002/657/EC. The method produced clean extracts with generally low matrix effect during LC-MS/MS analysis. The mean recoveries ranged between 24-162%, 48-151%, 51-159%, and 50-149% for 10, 20, 50 and 100 µg/kg spiking levels, respectively, with acceptable precision. The analytical method was sensitive enough to achieve 0.01-34.3 µg/kg and 0.03-115 µg/kg limits of detection and quantitation, respectively. The scope of the method was demonstrated by analyzing complex solid environmental matrices (chicken manure, swine manure, poultry feed and soil) spiked at 10, 20, 50 and 100 µg/kg levels. The method was also applied for the antibiotic analysis in samples with incurred residues. Different matrices in the order of the magnitude as sediments < poultry feed < swine manure < soil < chicken manure were detected with the residues of fluoroquinolone, macrolide, sulfonamide and tetracycline antibiotics.


Assuntos
Antibacterianos/química , Cromatografia Líquida de Alta Pressão/métodos , Resíduos de Drogas/química , Sedimentos Geológicos/química , Poluentes do Solo/química , Espectrometria de Massas em Tandem/métodos , Poluentes Químicos da Água/química , Ração Animal/análise , Animais , Antibacterianos/isolamento & purificação , Galinhas , Resíduos de Drogas/isolamento & purificação , Água Doce/química , Esterco/análise , Poluentes do Solo/isolamento & purificação , Extração em Fase Sólida , Suínos , Poluentes Químicos da Água/isolamento & purificação
7.
Water Res ; 181: 115857, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32497755

RESUMO

Recovery of rare earth elements (REEs) from industrial wastewater has drawn great attention due to their potential environmental toxicity, as well as their high demand in modern technologies. In this study, we developed a magnetic composite based on the high surface area porous ß-cyclodextrin polymer (P-CDP), namely P-CDP@Fe3O4. Both P-CDP and P-CDP@Fe3O4 rapidly sequester REEs such as Nd, Gd, Eu, and Y, reaching equilibrium in less than 10 min and fitting the Langmuir isotherm model with maximum adsorption capacities ranging from 7.76 to 9.59 mg/g at 25 °C when the highest initial concentration was 100 mg/L. Besides, the recovery of these REEs was not affected by competitive alkali, alkaline earth, and transition metal ions in model studies and industrial wastewater as revealed by the recovery efficiencies, which ranged from 62% to 100% indicating an excellent selectivity on both adsorbents. In addition, both adsorbents can be fully regenerated under mildly acidic conditions for at least five consecutive cycles. Moreover, P-CDP@Fe3O4 can be easily isolated by an external magnetic field which simplifies its synthesis and usability. It also overcomes the clogging and high backpressure issues of P-CDP, which facilitates its application for REEs recovery as compared with P-CDP. These characteristics demonstrate the promise of P-CDP and P-CDP@Fe3O4 for the pollution control and recovery of REEs.


Assuntos
Águas Residuárias , beta-Ciclodextrinas , Fenômenos Magnéticos , Polímeros , Porosidade
8.
J Hazard Mater ; 387: 121985, 2020 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-31911384

RESUMO

Dissipation potential of four algae viz. Haematococcus pluvialis, Selenastrum capricornutum, Scenedesmus quadricauda and Chlorella vulgaris was investigated against ten antibiotics (sulfamerazine, sulfamethoxazole, sulfamonomethoxine, trimethoprim, clarithromycin, azithromycin, roxithromycin, lomefloxacin, levofloxacin and flumequine) in a series of synthetic wastewater batch culture experiments, maintained at 20, 50 and 100 µg L-1 initial concentration levels and incubated over a period of 40 days. Generally, the antibiotic removal was achieved with overall dissipation percentage (%) varying among the algal species and different antibiotics. Biodegradation was the major antibiotic removal mechanism from the dissolved fraction, with minor contributions of bioadsorption, bioaccumulation, and abiotic factors. The antibiotics dissipation followed the pseudo-first-order-kinetics with the fastest antibiotic degradation rate achieved by H. pluvialis. The Monod kinetics was successfully applied to explain the relationship between the algal growth and the removal of antibiotics and nutrients in the batch cultures. S. capricornutum and C. vulgaris showed more affinity for the macrolides and fluoroquinolones than sulfonamides, while, H. pluvialis and S. quadiricauda showed relatively higher preference for sulfonamides than the other antibiotic groups. A total of 10 transformation products were identified and the transformation pathway was proposed, accordingly. Most of the transformation products had lower toxicity compared with their parent antibiotics.


Assuntos
Antibacterianos/metabolismo , Microalgas/metabolismo , Biodegradação Ambiental , Chlorella vulgaris/metabolismo , Clorofíceas/metabolismo , Cinética , Medição de Risco , Scenedesmus/metabolismo , Águas Residuárias/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA