Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 31(15): 155602, 2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-31860881

RESUMO

Functional modification and structural design of carbon electrode materials are considered as a cost-effective method to improve their electrochemical performance. In this study, a solvothermal method is applied to realize self-assembly of the metal-organic framework. After simple carbonization and acid treatment, carbon nanosheets with 2D adjustable defective sub-units are successfully prepared for the first time. It is found that carbonization temperature has a significant effect on the carbon skeleton structure. The optimal nanostructures with large specific surface area and appropriate pore size distribution make self-assembled carbon nanosheets having excellent Li/Na-ion storage properties. In addition, the adjustable carbon skeleton structure can effectively avoid irreversible damage when charge-discharge cycles. For Li-ion batteries, a specific capacity of 825 mAh g-1 is achieved after 100 cycles at 100 mA g-1, while for Na-ion batteries a specific capacity of 193 mAh g-1 is observed after 100 cycles at 100 mA g-1. Moreover, for Na-ion batteries, even at a high rate of 1000 mA g-1 the material delivers a specific capacity of 109.5 mAh g-1 after 3500 cycles.

2.
Chemistry ; 24(8): 1988-1997, 2018 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-29235705

RESUMO

Hollow carbon nanospheres (HCNs) with specific surface areas up to 2949 m2 g-1 and pore volume up to 2.9 cm3 g-1 were successfully synthesized from polyaniline-co-polypyrrole hollow nanospheres by carbonization and CO2 activation. The cavity diameter and wall thickness of HCNs can be easily controlled by activation time. Owing to their large inner cavity and enclosed structure, HCNs are desirable carriers for encapsulating sulfur. To better understand the effects of pore characteristics and sulfur contents on the performances of lithium-sulfur batteries, three composites of HCNs and sulfur are prepared and studied in detail. The composites of HCNs with moderate specific surface areas and suitable sulfur content present a better performance. The first discharge capacity of this composite reaches 1401 mAh g-1 at 0.2 C. Even after 200 cycles, the discharge capacity remains at 626 mAh g-1 .

3.
Dalton Trans ; 48(16): 5271-5284, 2019 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-30924838

RESUMO

Clews of polymer nanobelts (CsPNBs) have the advantages of inexpensive raw materials, simple synthesis and large output. Novel clews of carbon nanobelts (CsCNBs) have been successfully prepared by carbonizing CsPNBs and by KOH activation subsequently. From the optimized process, CsCNBs*4, with a specific surface area of 2291 m2 g-1 and a pore volume of up to 1.29 cm3 g-1, has been obtained. Fundamentally, the CsCNBs possess a three-dimensional conductive network structure, a hierarchically porous framework, and excellent hydrophilicity, which enable fast ion diffusion through channels and a large enough ion adsorption/desorption surface to improve electrochemical performance of supercapacitors. The product exhibits a high specific capacitance of 327.5 F g-1 at a current density of 0.5 A g-1 in a three-electrode system. The results also reveal a high-rate capacitance (72.2% capacitance retention at 500 mV s-1) and stable cycling lifetime (95% of initial capacitance after 15 000 cycles). Moreover, CsCNBs*4 provides a high energy density of 29.8 W h kg-1 at a power density of 345.4 W kg-1 in 1 M tetraethylammonium tetrafluoroborate/acetonitrile (TEABF4/AN) electrolyte. These inspiring results imply that this carbon material with a three-dimensional conductive network structure possesses excellent potential for energy storage.

4.
RSC Adv ; 8(4): 1857-1865, 2018 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35542586

RESUMO

It is critical for nanoporous carbons to have a large surface area, and low cost and be readily available for challenging energy and environmental issues. The pursuit of all three characteristics, particularly large surface area, is a formidable challenge because traditional methods to produce porous carbon materials with a high surface area are complicated and expensive, frequently resulting in pollution (commonly from the activation process). Here we report a facile method to synthesize nanoporous carbon materials with a high surface area of up to 1234 m2 g-1 and an average pore diameter of 0.88 nm through a simple carbonization procedure with carefully selected carbon precursors (biomass material) and carbonization conditions. It is the high surface area that leads to a high capacitance (up to 213 F g-1 at 0.1 A g-1) and a stable cycle performance (6.6% loss over 12 000 cycles) as shown in a three-electrode cell. Furthermore, the high capacitance (107 F g-1 at 0.1 A g-1) can be obtained in a supercapacitor device. This facile approach may open a door for the preparation of high surface area porous carbons for energy storage.

5.
ACS Appl Mater Interfaces ; 10(26): 22002-22012, 2018 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-29873477

RESUMO

Lithium-sulfur (Li-S) batteries are probably the most promising candidates for the next-generation batteries owing to their high energy density. However, Li-S batteries face severe technical problems where the dissolution of intermediate polysulfides is the biggest problem because it leads to the degradation of the cathode and the lithium anode, and finally the fast capacity decay. Compared with the composites of elemental sulfur and other matrices, sulfur-containing polymers (SCPs) have strong chemical bonds to sulfur and therefore show low dissolution of polysulfides. Unfortunately, most SCPs have very low electron conductivity and their morphologies can hardly be controlled, which undoubtedly depress the battery performances of SCPs. To overcome these two weaknesses of SCPs, a new strategy was developed for preparing SCP composites with enhanced conductivity and desired morphologies. With this strategy, macroporous SCP composites were successfully prepared from hierarchical porous carbon. The composites displayed discharge/charge capacities up to 1218/1139, 949/922, and 796/785 mA h g-1 at the current rates of 5, 10, and 15 C, respectively. Considering the universality of this strategy and the numerous morphologies of carbon materials, this strategy opens many opportunities for making carbon/SCP composites with novel morphologies.

6.
RSC Adv ; 8(9): 4786-4793, 2018 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35539531

RESUMO

Lithium-sulfur batteries are regarded as a promising energy storage system. However, they are plagued by rapid capacity decay, low coulombic efficiency, a severe shuttle effect and low sulfur loading in cathodes. To address these problems, effective carriers are highly demanded to encapsulate sulfur in order to extend the cycle life. Herein, we introduced a doped-PEDOT:PSS-coated MIL-101/S multi-core-shell structured composite. The unique structure of MIL-101, large specific area and conductive shell ensure high dispersion of sulfur in the composite and minimize the loss of polysulfides to the electrolyte. The doped-PEDOT:PSS-coated sulfur electrodes exhibited an increase in initial capacity and an improvement in rate characteristics. After 192 cycles at the current density of 0.1C, a doped-PEDOT:PSS-coated MIL-101/S electrode maintained a capacity of 606.62 mA h g-1, while the MIL-101/S@PEDOT:PSS electrode delivered a capacity of 456.69 mA h g-1. The EIS measurement revealed that the surface modification with the conducting polymer provided a lower resistance to the sulfur electrode, which resulted in better electrochemical behaviors in Li-S battery applications. Test results indicate that the MIL-101/S@doped-PEDOT:PSS is a promising host material for the sulfur cathode in the lithium-sulfur battery applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA