Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
FASEB J ; 38(2): e23435, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38243686

RESUMO

As a histone acetyltransferase, lysine acetyltransferase 8 (KAT8) participates in diverse biological processes. However, the effect of KAT8 on oocyte maturation in mice remains unclear. In this study, we found that mouse oocytes overexpressing Kat8-OE induced maturation failure manifested reduced rates of GVBD and first polar body emission. In addition, immunostaining results revealed that Kat8 overexpressing oocytes showed inappropriate mitochondrial distribution patterns, overproduction of reactive oxygen species (ROS), accumulation of phosphorylated γH2AX, hyperacetylation of α-tubulin, and severely disrupted spindle/chromosome organization. Moreover, we revealed that Kat8 overexpression induced a decline in SOD1 proteins and KAT8's interaction with SOD1 in mouse ovaries via immunoprecipitation. Western blotting data confirmed that Kat8-OE induced downregulation of SOD1 expression, which is a key factor for the decline of oocyte quality in advanced maternal age. Also, the injection of Myc-Sod1 cRNA could partially rescue maternal age-induced meiotic defects in oocytes. In conclusion, our data demonstrated that high level of KAT8 inhibited SOD1 activity, which in turn induced defects of mitochondrial dynamics, imbalance of redox homeostasis, and spindle/chromosome disorganization during mouse oocyte maturation.


Assuntos
Histona Acetiltransferases , Meiose , Dinâmica Mitocondrial , Oócitos , Animais , Camundongos , Histona Acetiltransferases/metabolismo , Homeostase , Oócitos/citologia , Oócitos/metabolismo , Oxirredução , Fuso Acromático/metabolismo , Superóxido Dismutase-1/genética
2.
Reprod Biol Endocrinol ; 22(1): 5, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38169395

RESUMO

BACKGROUND: Neuroepithelial transforming gene 1 (NET1) is a RhoA subfamily guanine nucleotide exchange factor that governs a wide array of biological processes. However, its roles in meiotic oocyte remain unclear. We herein demonstrated that the NET1-HACE1-RAC1 pathway mediates meiotic defects in the progression of oocyte maturation. METHODS: NET1 was reduced using a specific small interfering RNA in mouse oocytes. Spindle assembly, chromosomal alignment, the actin cap, and chromosomal spreads were visualized by immunostaining and analyzed under confocal microscopy. We also applied mass spectroscopy, and western blot analysis for this investigation. RESULTS: Our results revealed that NET1 was localized to the nucleus at the GV stage, and that after GVBD, NET1 was localized to the cytoplasm and predominantly distributed around the chromosomes, commensurate with meiotic progression. NET1 resided in the cytoplasm and significantly accumulated on the spindle at the MI and MII stages. Mouse oocytes depleted of Net1 exhibited aberrant first polar body extrusion and asymmetric division defects. We also determined that Net1 depletion resulted in reduced RAC1 protein expression in mouse oocytes, and that NET1 protected RAC1 from degradation by HACE1, and it was essential for actin dynamics and meiotic spindle formation. Importantly, exogenous RAC1 expression in Net1-depleted oocytes significantly rescued these defects. CONCLUSIONS: Our results suggest that NET1 exhibits multiple roles in spindle stability and actin dynamics during mouse oocyte meiosis.


Assuntos
Actinas , Fuso Acromático , Animais , Camundongos , Actinas/metabolismo , Meiose , Oncogenes , Oócitos/metabolismo , Fuso Acromático/metabolismo
3.
Theriogenology ; 221: 31-37, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38537319

RESUMO

Embryo quality is strongly associated with subsequent embryonic developmental efficiency. However, the detailed function of lysine acetyltransferase 8 (KAT8) during early embryonic development in mice remains elusive. In this study, we reported that KAT8 played a pivotal role in the first cleavage of mouse embryos. Immunostaining results revealed that KAT8 predominantly accumulated in the nucleus throughout the entire embryonic developmental process. Kat8 overexpression (Kat8-OE) was correlated with early developmental potential of embryos to the blastocyst stage. We also found that Kat8-OE embryos showed spindle-assembly defects and chromosomal misalignment, and that Kat8-OE in embryos led to increased levels of reactive oxygen species (ROS), accumulation of phosphorylated γH2AX by affecting the expression of critical genes related to mitochondrial respiratory chain and antioxidation pathways. Subsequently, cellular apoptosis was activated as confirmed by TUNEL (Terminal Deoxynucleotidyl Transferase mediated dUTP Nick-End Labeling) assay. Furthermore, we revealed that KAT8 was related to regulating the acetylation status of H4K16 in mouse embryos, and Kat8-OE induced the hyperacetylation of H4K16, which might be a key factor for the defective spindle/chromosome apparatus. Collectively, our data suggest that KAT8 constitutes an important regulator of spindle assembly and redox homeostasis during early embryonic development in mice.


Assuntos
Blastocisto , Desenvolvimento Embrionário , Gravidez , Feminino , Animais , Camundongos , Desenvolvimento Embrionário/fisiologia , Blastocisto/metabolismo , Embrião de Mamíferos , Apoptose , Marcação In Situ das Extremidades Cortadas/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA