RESUMO
In the present study, calcium carbonate (CaCO3) was applied to Cd-contaminated soil at rates of 0, 0.5 and 1.0 g kg(-1). The effect of CaCO3 on soil pH, organic matter, available Cd, exchangeable Cd and level of major nutrients in a tobacco field and on accumulation of various elements in tobacco plants was determined. The results showed that CaCO3 application significantly increased the pH level, available P and exchangeable Ca but decreased organic matter, available Cd, exchangeable Cd, available heavy metals (Fe, Mn, Zn and Cu) and available K in soil. Additionally, CaCO3 application substantially reduced Cd accumulation in tobacco roots, stems, upper leaves, middle leaves and lower leaves, with maximum decrease of 22.3%, 32.1%, 24.5%, 22.0% and 18.2%, respectively. There were large increase in total Ca and slight increases in total N and K but decrease to varying degrees in total Fe, Cu and Zn due to CaCO3 application. CaCO3 had little effect on total P and Mn levels in tobacco leaves.
Assuntos
Biodegradação Ambiental , Cádmio/metabolismo , Carbonato de Cálcio/farmacologia , Nicotiana/metabolismo , Poluentes do Solo/metabolismo , Solo/química , Cálcio/química , Cálcio/metabolismo , Magnésio/química , Magnésio/metabolismo , Fósforo/química , Fósforo/metabolismo , Potássio/química , Potássio/metabolismo , Nicotiana/efeitos dos fármacosRESUMO
Introduction: The effects of continuous cropping and rotation cropping, two important tobacco cultivation practices, on soil microbial communities at different stages remain unclear. Different planting patterns have been shown to influence soil physical and chemical properties, which in turn can affect the composition and diversity of soil microbial communities. Methods: In order to investigate the impact of different planting methods on soil microbial community structure, we selected two representative planting methods: continuous cropping (tobacco) and rotational cropping (tobacco-maize). These methods were chosen as the focal points of our research to explore the potential effects on soil microbial communities. High-throughput sequencing technology was employed to investigate the structure of soil microbial communities, as well as their relationships with soil environmental factors, by utilizing the 16S rRNA, ITS, and 18S genes. Furthermore, the interaction among microorganisms was explored through the application of the Random Matrix Theory (RMT) molecular ecological network approach. Results: There was no significant difference in α diversity, but significant difference in ß diversity based on Jaccard distance test. Compared to continuous cropping, crop rotation significantly increased the abundance of beneficial prokaryotes Verrucomicrobia and Rhodanobacter. These findings indicate that crop rotation promotes the enrichment of Verrucomicrobia and Rhodanobacter in the soil microbial community. AP and NH4-N had a greater effect on the community structure of prokaryotes and fungi in tobacco soil, while only AP had a greater effect on the community structure of protist. Molecular ecological network analysis showed that the network robustness and Cohesion of rotation were significantly higher than that of continuous cropping, indicating that the complexity and stability of molecular ecological networks were higher in the rotational, and the microbial communities cooperated more effectively, and the community structure was more stable. Discussion: From this point of view, rotational cropping is more conducive to changing the composition of soil microbial community, enhancing the stability of microbial network structure, and enhancing the potential ecological functions in soil.
RESUMO
A bacterial strain (SE08) capable of utilizing 2-methyl-4-chlorophenoxy acetic acid (MCPA) as the sole carbon and energy source for growth was isolated by continuous enrichment culturing in minimal salt medium (MSM) from a long term MCPA exposed soil. This bacterial strain was identified as Enterobacter sp. based on morphological, physiological and biochemical tests, as well as 16S rRNA sequence analysis. Its ability to degrade MCPA was determined using high performance liquid chromatography. The strain SE08 can tolerate unusually high MCPA concentrations (125-2000mg/L). The influences of culturing factors (initial concentration, pH, and temperature) on the bacterial growth and substrate degradation were studied. The results showed that the optimal MCPA degradation occurred at an MCPA concentration of 500mg/L, 30°C and pH 6.0. Under these conditions, 68.5 percent of MCPA in MSM was degraded by SE08, and the OD600nm reached 0.64 after culturing for 72h. The degradation of MCPA could be enhanced by addition of both carbon and nitrogen sources. At an initial MCPA concentration of 500mg/L, when 5g/L glucose and 2.5g/L yeast extract were added into the MSM media, the MCPA degradation was significantly increased to 83.8 percent, and OD600nm was increased to 1.09 after incubation at 30°C and pH 6.0 for 72h. This is the first study showing that an Enterobacter sp. strain is capable of degrading MCPA, which might provide a new approach for the remediation of MCPA contaminated soil and contribute to the limited knowledge about the function of Enterobacter species.
Assuntos
Ácido 2-Metil-4-clorofenoxiacético/metabolismo , Enterobacter/genética , Enterobacter/metabolismo , Microbiologia do Solo , Biodegradação Ambiental , Carbono/farmacologia , China , Meios de Cultura/farmacologia , Enterobacter/efeitos dos fármacos , Enterobacter/crescimento & desenvolvimento , Enterobacter/isolamento & purificação , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Nitrogênio/farmacologia , Filogenia , RNA Ribossômico 16S/genética , TemperaturaRESUMO
In the plant rhizosphere and endosphere, some fungal and bacterial species regularly co-exist, however, our knowledge about their co-existence patterns is quite limited, especially during invasion by bacterial wilt pathogens. In this study, the fungal communities from soil to endophytic compartments were surveyed during an outbreak of tobacco wilt disease caused by Ralstonia solanacearum. It was found that the stem endophytic fungal community was significantly altered by pathogen invasion in terms of community diversity, structure, and composition. The associations among fungal species in the rhizosphere and endosphere infected by R. solanacearum showed more complex network structures than those of healthy plants. By integrating the bacterial dataset, associations between fungi and bacteria were inferred by Inter-Domain Ecological Network (IDEN) approach. It also revealed that infected samples, including both the rhizosphere and endosphere, had more complex interdomain networks than the corresponding healthy samples. Additionally, the bacterial wilt pathogenic Ralstonia members were identified as the keystone genus within the IDENs of both root and stem endophytic compartments. Ralstonia members was negatively correlated with the fungal genera Phoma, Gibberella, and Alternaria in infected roots, as well as Phoma, Gibberella, and Diaporthe in infected stems. This suggested that those endophytic fungi may play an important role in resisting the invasion of R. solanacearum.
RESUMO
As a highly efficient insecticide, thiamethoxam was widely used in the world. However, it was bioaccumulative and toxic to aquatic organisms that must be removed from water. In this work, nanoscale zero-valent iron particles loaded on montmorillonite (nZVI/Mt) were successfully synthesized for effective removal of thiamethoxam. The properties of nZVI/Mt for the removal of thiamethoxam were investigated, and the reaction conditions were optimized through response surface methodology. Furthermore, the degradation products were analyzed by liquid chromatography-mass spectrometry (LC/MS). The results demonstrated that the reaction activity of nZVI was enhanced because the agglomeration and oxidation of nZVI particles were effectively inhibited by using montmorillonite as a support. The significance of the effects of each factor on the removal of thiamethoxam was determined to be in the order of pH Ë temperature Ë reaction time Ë nZVI/Mt dosage. The optimal conditions were as follows: a dosage of nZVI/Mt of 2 g/L, a reaction time of 2 h, a reaction temperature of 35 °C, and a solution pH of 3. The removal efficiency of thiamethoxam (C0 = 20 mg/L) was observed to be as high as 94.29% under the optimal conditions, which was close to the value of 94.47% that was predicted using the mathematical model, indicating that the model could accurately predict the removal efficiency of thiamethoxam. The degradation mechanism involved the -NO2 group on the thiamethoxam molecule was reduced and eliminated by nZVI/Mt.
Assuntos
Bentonita , Poluentes Químicos da Água , Ferro , Oxirredução , Tiametoxam , Poluentes Químicos da Água/análiseRESUMO
The microbiota colonizing the root endophytic compartment and surrounding rhizosphere soils contribute to plant growth and health. However, the key members of plant soil and endophytic microbial communities involved in inhibiting or assisting pathogen invasion remain elusive. By utilizing 16S high-throughput sequencing and a molecular ecological network (MEN) approach, we systematically studied the interactions within bacterial communities in plant endophytic compartments (stem and root) and the surrounding soil (bulk and rhizosphere) during bacterial wilt invasion. The endophytic communities were found to be strongly influenced by pathogen invasion according to analysis of microbial diversity and community structure and composition. Endophytic communities of the infected plants were primarily derived from soil communities, as assessed by the SourceTracker program, but with rare migration from soil communities to endophytic communities observed in healthy plants. Soil and endophytic microbiomes from infected plants showed modular topology and greater complexity in network analysis, and a higher number of interactions than those in healthy plants. Furthermore, interactions among microbial members revealed that pathogenic Ralstonia members were positively correlated with several bacterial genera, including Delftia, Stenotrophomonas, Bacillus, Clostridium XlVa, Fontibacillus, Acidovorax, Herminiimonas, and three unclassified bacterial genera, in infected plant roots. Our findings indicated that the pathogen invasion in the rhizosphere and endophytic compartments may be highly associated with bacteria that are normally not detrimental, and sometimes even beneficial, to plants.