Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
J Am Chem Soc ; 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39031086

RESUMO

The sluggish CO2 reduction and evolution reaction kinetics are thorny problems for developing high-performance Li-CO2 batteries. For the complicated multiphase reactions and multielectron transfer processes in Li-CO2 batteries, exploring efficient cathode catalysts and understanding the interplay between structure and activity are crucial to couple with these pendent challenges. In this work, we applied the CoS as a model catalyst and adjusted its electronic structure by introducing sulfur vacancies to optimize the d-band and p-band centers, which steer the orbital hybridization and boost the redox kinetics between Li and CO2, thus improving the discharge platform of Li-CO2 batteries and altering the deposition behavior of discharge products. As a result, a highly efficient bidirectional catalyst exhibits an ultrasmall overpotential of 0.62 V and a high energy efficiency of 82.8% and circulates stably for nearly 600 h. Meanwhile, density functional theory calculations and multiphysics simulations further elucidate the mechanism of bidirectional activity. This work not only provides a proof of concept to design a remarkably efficient catalyst but also sheds light on promoting the reversible Li-CO2 reaction by tailoring the electronic structure.

2.
Small ; 20(1): e2304463, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37649191

RESUMO

The high activity of water molecules results in a series of awful parasitic reaction, which seriously impede the development of aqueous zinc batteries. Herein, a new gel electrolyte with multiple molecular anchors is designed by employing natural biomaterials from chitosan and chlorophyll derivative. The gel electrolyte firmly anchors water molecules by ternary hydrogen bonding to reduce the activity of water molecules and inhibit hydrogen evolution reaction. Meanwhile, the multipolar charged functional groups realize the gradient induction and redistribution of Zn2+ , which drives oriented Zn (002) plane deposition of Zn2+ and then achieves uniform Zn deposition and dendrite-free anode. As a result, it endows the Zn||Zn cell with over 1700 h stripping/plating processes and a high efficiency of 99.4% for the Zn||Cu cell. In addition, the Zn||V2 O5 full cells also exhibit capacity retention of 81.7% after 600 cycles at 0.5 A g-1 and excellent long-term stability over 1600 cycles at 2 A g-1 , and the flexible pouch cells can provide stable power for light-emitting diodes even after repeated bending. The gel electrolyte strategy provides a reference for reversible zinc anode and flexible wearable devices.

3.
Nano Lett ; 23(12): 5722-5730, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37314735

RESUMO

The organic electrolyte can resolve the hurdle of hydrogen evolution in aqueous electrolytes but suffers from sluggish electrochemical reaction kinetics due to a compromised mass transfer process. Herein, we introduce a chlorophyll, zinc methyl 3-devinyl-3-hydroxymethyl-pyropheophorbide-a (Chl), as a multifunctional electrolyte additive for aprotic zinc batteries to address the related dynamic problems in organic electrolyte systems. The Chl exhibits multisite zincophilicity, which significantly reduces the nucleation potential, increases the nucleation sites, and induces uniform nucleation of Zn metal with a nucleation overpotential close to zero. Furthermore, the lower LUMO of Chl contributes to a Zn-N-bond-containing SEI layer and inhibits the decomposition of the electrolyte. Therefore, the electrolyte enables repeated zinc stripping/plating up to 2000 h (2 Ah cm-2 cumulative capacity) with an overpotential of only 32 mV and a high Coulomb efficiency of 99.4%. This work is expected to enlighten the practical application of organic electrolyte systems.

4.
J Dairy Sci ; 106(1): 84-95, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36357206

RESUMO

Cronobacter sakazakii is a harmful foodborne pathogen, and its contaminated food will pose a huge threat to human health. Prevention of C. sakazakii contamination of food is valuable for food safety as well as for human health. In this study, silver nanoparticles (AgNP) were successfully immobilized on the surface of cellulose acetate (CA) and polymethylmethacrylate (PMMA) composite to obtain AgNP/PMMA/CA film. Through the inhibition zone and growth curve experiments, we found that AgNP/PMMA/CA films has excellent antibacterial activity on C. sakazakii. The AgNP/PMMA/CA film can prolong the lag phase of the growth curve of C. sakazakii from 2 to 8 h. The antibacterial films were found to reduce the survival of C. sakazakii in Luria-Bertani and infant formula by combining it with a mild heat treatment (45°C, 50°C, and 55°C). The AgNP/PMMA/CA film combined with 55°C water bath can completely inactivate C. sakazakii in infant formula within 120 min. Finally, the potential mechanism by which AgNP/PMMA/CA films reduce the heat tolerance of C. sakazakii was investigated by quantitative real-time PCR. The results showed that AgNP/PMMA/CA films could reduce the expression of environmental tolerance-related genes in C. sakazakii. The current research shows that AgNP/PMMA/CA film has strong antibacterial activity, and the antibacterial film combined with mild heat treatment can accelerate the inactivation of C. sakazakii and effectively reduce the harm of foodborne pathogens. The AgNP/PMMA/CA film can be used as a potential packaging material or antibacterial surface coating.


Assuntos
Cronobacter sakazakii , Nanopartículas Metálicas , Humanos , Animais , Fórmulas Infantis/microbiologia , Polimetil Metacrilato/farmacologia , Leite/microbiologia , Prata/farmacologia , Microbiologia de Alimentos , Antibacterianos/farmacologia
5.
Nano Lett ; 22(23): 9685-9692, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36441867

RESUMO

The practical application of Na-superionic conductor structured materials is hindered by limited energy density and structure damage upon activating the third Na+. We propose a bimetal substitution strategy with cheaper Fe and Ni elements for costive vanadium in the polyanion to improve both ionic and electronic conductivities, and a single two-phase reaction during Na+ intercalation/deintercalation and much reduced Na+ diffusion barrier are uncovered by ex-situ X-ray diffraction and density functional theory calculations. Thus, the obtained cathode, Na3Fe0.8VNi0.2(PO4)3, shows excellent electrochemical performances including high specific capacity (102.2 mAh g-1 at 0.1C), excellent rate capability (79.3 mAh g-1 at 20C), cycling stability (84.6% of capacity retention over 1400 cycles at 20C), low-temperature performance (89.7 mAh g-1 at 2C and -10 °C), and structure stability in an extended voltage window for the third Na+ utilization. A competitive energy density of ≈287 Wh kg-1 for full batteries based on cathode and anode materials is also confirmed.

6.
Molecules ; 28(10)2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37241847

RESUMO

High-energy-density lithium metal batteries with high safety and stability are urgently needed. Designing the novel nonflammable electrolytes possessing superior interface compatibility and stability is critical to achieve the stable cycling of battery. Herein, the functional additive dimethyl allyl-phosphate and fluoroethylene carbonate were introduced to triethyl phosphate electrolytes to stabilize the deposition of metallic lithium and accommodate the electrode-electrolyte interface. In comparison with traditional carbonate electrolyte, the designed electrolyte shows high thermostability and inflaming retarding characteristics. Meanwhile, the Li||Li symmetrical batteries with designed phosphonic-based electrolytes exhibit a superior cycling stability of 700 h at the condition of 0.2 mA cm-2, 0.2 mAh cm-2. Additionally, the smooth- and dense-deposited morphology was observed on an cycled Li anode surface, demonstrating that the designed electrolytes show better interface compatibility with metallic lithium anodes. The Li||LiNi0.8Co0.1Mn0.1O2 and Li||LiNi0.6Co0.2Mn0.2O2 batteries paired with phosphonic-based electrolytes show better cycling stability after 200 and 450 cycles at the rate of 0.2 C, respectively. Our work provides a new way to ameliorate nonflammable electrolytes in advanced energy storage systems.

7.
J Dairy Sci ; 105(8): 6469-6482, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35840406

RESUMO

Cronobacter sakazakii is a food-borne pathogen that is resistant to a variety of environmental stress conditions. It can survive in harsh environments. We studied the effects of silver nanoparticles (AgNP) on the environmental tolerance and biofilm formation of C. sakazakii. First, we determined the minimum inhibitory concentration (MIC) of AgNP to C. sakazakii and determined the growth curve of C. sakazakii treated with different concentrations of AgNP by using the plate counting method. After determining the sub-inhibition concentrations (SIC) of AgNP on C. sakazakii, we studied the effects of AgNP on the resistance of C. sakazakii to heat, desiccation, osmotic pressure, and acid. The antibiofilm activity of AgNP was also studied. Finally, real-time quantitative PCR was used to analyze the transcription levels of 16 genes related to the environmental tolerance of C. sakazakii. The SIC of AgNP significantly reduced the survival rate of C. sakazakii under various environmental stress conditions. The results showed that AgNP at 0.625 and 1.25 µg/mL significantly inhibited the formation of C. sakazakii biofilms. The expression levels of most genes were significantly downregulated in C. sakazakii cells treated with 0.625 and 1.25 µg/mL AgNP. Therefore, AgNP may reduce the environmental tolerance of C. sakazakii by inhibiting the expression of genes related to stress tolerance. Moreover, AgNP inhibited the production of ATP in C. sakazakii cells and the formation of C. sakazakii biofilms. Our research provides a theoretical basis for the application of AgNP in food packaging, bactericidal coatings, and other fields.


Assuntos
Cronobacter sakazakii , Nanopartículas Metálicas , Animais , Biofilmes , Cronobacter sakazakii/genética , Testes de Sensibilidade Microbiana/veterinária , Prata/farmacologia
8.
Angew Chem Int Ed Engl ; 59(16): 6585-6589, 2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32017343

RESUMO

A hybrid solid/liquid electrolyte with superior security facilitates the implementation of high-energy-density storage devices, but it suffers from inferior chemical compatibility with cathodes. Herein, an optimal lithium difluoro(oxalato)borate salt was introduced to build in situ an amorphous cathode electrolyte interphase (CEI) between Ni-rich cathodes and hybrid electrolyte. The CEI preserves the surface structure with high compatibility, leading to enhanced interfacial stability. Meanwhile, the space-charge layer can be prominently mitigated at the solid/solid interface via harmonized chemical potentials, acquiring promoted interfacial dynamics as revealed by COMSOL simulation. Consequently, the amorphous CEI integrates the bifunctionality to provide an excellent cycling stability, high Coulombic efficiency, and favorable rate capability in high-voltage Li-metal batteries, innovating the design philosophy of functional CEI strategy for future high-energy-density batteries.

9.
J Am Chem Soc ; 141(23): 9165-9169, 2019 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-31141357

RESUMO

The fast-ionic-conducting ceramic electrolyte is promising for next-generation high-energy-density Li-metal batteries, yet its application suffers from the high interfacial resistance and poor interfacial stability. In this study, the compatible solid-state electrolyte was designed by coating Li1.4Al0.4Ti1.6(PO4)3 (LATP) with polyacrylonitrile (PAN) and polyethylene oxide (PEO) oppositely to satisfy deliberately the disparate interface demands. Wherein, the upper PAN constructs soft-contact with LiNi0.6Mn0.2Co0.2O2, and the lower PEO protects LATP from being reduced, guaranteeing high-voltage tolerance and improved stability toward Li-metal anode performed in one ceramic. Moreover, the core function of LATP is amplified to guide homogeneous ions distribution and hence suppresses the formation of a space-charge layer across interfaces, uncovered by the COMSOL Multiphysics concentration field simulation. Thus, such a bifunctional modified ceramic electrolyte integrates the respective superiority to render Li-metal batteries with excellent cycling stability (89% after 120 cycles), high Coulombic efficiency (exceeding 99.5% per cycle), and a dendrite-free Li anode at 60 °C, which represents an overall design of ceramic interface engineering for future practical solid battery systems.

10.
J Am Chem Soc ; 140(22): 6767-6770, 2018 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-29775293

RESUMO

The rapid capacity decay caused by the poor contact and large polarization at the interface between the cathode and solid electrolytes is still a big challenge to overcome for high-power-density solid batteries. In this study, a superior Li+ conductive transition layer Li1.4Al0.4Ti1.6(PO4)3 is introduced to coat LiNi0.6Co0.2Mn0.2O2, as a model cathode, to mitigate polarization and enhance dynamic characteristics. The critical attribute for such superior dynamics is investigated by the atomic force microscopy with boundary potential analysis, revealing that the formed interfacial transition layer provides a gradual potential slope and sustain-released polarization, and endows the battery with improved cycling stability (90% after 100 cycles) and excellent rate capability (116 mA h g-1 at 2 C) at room temperature, which enlightens the comprehension of interface engineering in the future solid batteries systems.

11.
Macromol Rapid Commun ; 39(20): e1800382, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30073736

RESUMO

The matrix-free polymer nanocomposites (PNCs) formed by polymer-grafted nanoparticles(NPs) gain enormous attention due to their controllable morphology and robust properties. Herein, through molecular dynamics simulation, such PNCs are successfully constructed, and the dispersion state of the NPs can be tailored by varying the grafting density. By manipulating the interaction strength between the end groups of the grafted polymer chains, the tensile fracture behavior and the chain orientation are examined. It is revealed that both of them fall down at large strain because of the propagation of the cavities. By probing the self-healing kinetics at various self-healing temperature and time, a time-temperature superposition principle, similar to the Williams, Landel and Ferry equation, is proposed. These results could provide some fundamental guidelines for the design and fabrication of high performance PNCs with excellent self-healing functionality.


Assuntos
Modelos Teóricos , Nanocompostos/química , Nanopartículas/química , Polímeros/química , Cinética , Simulação de Dinâmica Molecular , Temperatura
12.
Angew Chem Int Ed Engl ; 57(6): 1505-1509, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29239079

RESUMO

Lithium (Li) metal is a promising anode material for high-energy density batteries. However, the unstable and static solid electrolyte interphase (SEI) can be destroyed by the dynamic Li plating/stripping behavior on the Li anode surface, leading to side reactions and Li dendrites growth. Herein, we design a smart Li polyacrylic acid (LiPAA) SEI layer high elasticity to address the dynamic Li plating/stripping processes by self-adapting interface regulation, which is demonstrated by in situ AFM. With the high binding ability and excellent stability of the LiPAA polymer, the smart SEI can significantly reduce the side reactions and improve battery safety markedly. Stable cycling of 700 h is achieved in the LiPAA-Li/LiPAA-Li symmetrical cell. The innovative strategy of self-adapting SEI design is broadly applicable, providing opportunities for use in Li metal anodes.

13.
J Am Chem Soc ; 138(49): 15825-15828, 2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27960330

RESUMO

High-energy rechargeable Li metal batteries are hindered by dendrite growth due to the use of a liquid electrolyte. Solid polymer electrolytes, as promising candidates to solve the above issue, are expected to own high Li ion conductivity without sacrificing mechanical strength, which is still a big challenge to realize. In this study, a bifunctional solid polymer electrolyte exactly having these two merits is proposed with an interpenetrating network of poly(ether-acrylate) (ipn-PEA) and realized via photopolymerization of ion-conductive poly(ethylene oxide) and branched acrylate. The ipn-PEA electrolyte with facile processing capability integrates high mechanical strength (ca. 12 GPa) with high room-temperature ionic conductance (0.22 mS cm-1), and significantly promotes uniform Li plating/stripping. Li metal full cells assembled with ipn-PEA electrolyte and cathodes within 4.5 V vs Li+/Li operate effectively at a rate of 5 C and cycle stably at a rate of 1 C at room temperature. Because of its fabrication simplicity and compelling characteristics, the bifunctional ipn-PEA electrolyte reshapes the feasibility of room-temperature solid-state Li metal batteries.

14.
Colloids Surf B Biointerfaces ; 237: 113868, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522282

RESUMO

Silver nanoparticles (AgNPs) is an excellent antibacterial agent, which is widely used in medical, food, environmental and other fields, but AgNPs are easy to accumulate in aqueous solution, so their application in various fields is limited. Therefore, it is particularly important to propose a new application method or to prepare a new composite material. In this study, OA/PVA was obtained by cross-linking oxalic acid (OA) with polyvinyl alcohol (PVA). Then Ag/NCC was obtained by in situ reduction of AgNPs on nanocellulose crystals (NCC). Finally, Ag/NCC/OA/PVA composite antimicrobial films with good waterproofing effect were prepared by mixing Ag/NCC with OA/PVA. Subsequently, the films were characterized using SEM, UV-vis, FTIR and XRD, as well as physicochemical properties such as mechanical strength and hydrophilic properties were determined. The results indicated that the Ag/NCC/OA/PVA films possess good light transmittance, mechanical properties, water resistance, antibacterial activity, and biodegradability. The results of the mechanism study showed that Ag/NCC/OA/PVA films can destroy cell integrity, inhibit succinate dehydrogenase (SDH) activity, thereby reducing intracellular ATP levels. And induce a large number of reactive oxygen species (ROS) production, eventually leading to the death of C. sakazakii. In summary, Ag/NCC/OA/PVA film has good physical and chemical properties, antibacterial activity and biocompatibility, and has promising applications in food and medical antibacterial fields.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Prata/farmacologia , Prata/química , Álcool de Polivinil/química , Nanopartículas Metálicas/química , Ácido Oxálico/farmacologia , Escherichia coli , Staphylococcus aureus , Antibacterianos/farmacologia , Antibacterianos/química , Anti-Infecciosos/farmacologia , Biofilmes
15.
Int J Biol Macromol ; 269(Pt 2): 132115, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38719015

RESUMO

Bacterial infections pose a serious threat to human health and socioeconomics worldwide. In the post-antibiotic era, the development of novel antimicrobial agents remains a challenge. Polyphenols are natural compounds with a variety of biological activities such as intrinsic antimicrobial activity and antioxidant properties. Metal-polyphenol obtained by chelation of polyphenol ligands with metal ions not only possesses efficient antimicrobial activity but also excellent biocompatibility, which has great potential for application in biomedical and food packaging fields. Herein, we developed metal-polyphenol coordination nanosheets named copper oxidized tannic acid quinone (CuTAQ) possessing efficient antibacterial and anti-biofilm effects, which was synthesized by a facile one-pot method. The synthesis was achieved by chelation of partially oxidized tannic acid (TA) with Cu2+ under mild conditions, which supports low-cost and large-scale production. It was demonstrated that CuTAQ exhibited high antibacterial activity via disrupting the integrity of bacterial cell membranes, inducing oxidative stress, and interfering with metabolism. In addition, CuTAQ exhibits excellent peroxidase catalytic activity and photothermal conversion properties, which play a significant role in enhancing its bactericidal and biofilm scavenging abilities. This study provides insights for rational design of innovative metal-polyphenol nanomaterials with efficient antimicrobial properties.


Assuntos
Antibacterianos , Nanoestruturas , Polifenóis , Antibacterianos/farmacologia , Antibacterianos/química , Polifenóis/química , Polifenóis/farmacologia , Nanoestruturas/química , Taninos/química , Taninos/farmacologia , Biofilmes/efeitos dos fármacos , Cobre/química , Cobre/farmacologia , Peroxidase/metabolismo , Testes de Sensibilidade Microbiana , Humanos
16.
ACS Appl Mater Interfaces ; 16(25): 32189-32197, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38870428

RESUMO

Owing to the advantages of low cost, high safety, and a desirable cycling lifetime, vanadium redox flow batteries (VRFBs) have attracted great attention in the large-scale energy storage field. However, graphite felts (GFs), widely used as electrode materials, usually possess an inferior catalytic activity for the redox reaction of vanadium ions, largely limiting the energy efficiency and rate performance of VRFBs. Here, an in situ growth of amorphous MnO2 on graphite felt (AMO@GF) was designed for application in VRFBs via mild and rapid etching engineering (5 min). After the etching process, the graphite felt fibers showed a porous and defective surface, contributing to abundant active sites toward the redox reaction. In addition, formed amorphous MnO2 can also serve as a powerful catalyst to facilitate the redox couples of VO2+/VO2+ based on density functional theoretical (DFT) calculations. As a result, the VRFB using AMO@GF displayed an elevated energy efficiency and superior stability after 2400 cycles at 200 mA cm-2, and the maximum current density can reach 300 mA cm-2. Such a high-efficiency and convenient design strategy for the electrode material will drive the further development and industrial application of VRFBs and other flow battery systems.

17.
Adv Mater ; 36(1): e2308889, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37960976

RESUMO

Li-CO2 batteries arouse great interest in the context of carbon neutralization, but their practicability is severely hindered by the sluggish CO2 redox reaction kinetics at the cathode, which brings about formidable challenges such as high overpotential and low Coulombic efficiency. For the complex multi-electron transfer process, the design of catalysts at the molecular or atomic level and the understanding of the relationship between electron state and performance are essential for the CO2 redox. However, little attention is paid to it. In this work, using Co3 S4 as a model system, density functional theory (DFT) calculations reveal that the adjusted d-band and p-band centers of Co3 S4 with the introduction of Cu and sulfur vacancies are hybridized between CO2 and Li species, respectively, which is conducive to the adsorption of reactants and the decomposition of Li2 CO3 , and the experimental results further verify the effectiveness of energy band engineering. As a result, a highly efficient bidirectional catalyst is produced and shows an ultra-small voltage gap of 0.73 V and marvelous Coulombic efficiency of 92.6%, surpassing those of previous catalysts under similar conditions. This work presents an effective catalyst design and affords new insight into the high-performance cathode catalyst materials for Li-CO2 batteries.

18.
ACS Nano ; 18(6): 5003-5016, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38294411

RESUMO

The cycling stability of a thin zinc anode under high zinc utilization has a critical impact on the overall energy density and practical lifetime of zinc ion batteries. In this study, an ion sieve protection layer (ZnSnF@Zn) was constructed in situ on the surface of a zinc anode by chemical replacement. The ion sieve facilitated the transport and desolvation of zinc ions at the anode/electrolyte interface, reduced the zinc deposition overpotential, and inhibited side reactions. Under a 50% zinc utilization, the symmetrical battery with this protection layer maintained stable cycling for 250 h at 30 mA cm-2. Matched with high-load self-supported vanadium-based cathodes (18-20 mg cm-2), the coin battery with 50% zinc utilization possessed an energy density retention of 94.3% after 1000 cycles at 20 mA cm-2. Furthermore, the assembled pouch battery delivered a whole energy density of 61.3 Wh kg-1, surpassing the highest mass energy density among reported mild zinc batteries, and retained 76.7% of the energy density and 85.3% (0.53 Ah) of the capacity after 300 cycles.

19.
Adv Mater ; 36(1): e2309264, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37985147

RESUMO

Lithium-carbon dioxide (Li-CO2 ) batteries are regarded as a prospective technology to relieve the pressure of greenhouse emissions but are confronted with sluggish CO2 redox kinetics and low energy efficiency. Developing highly efficient and low-cost catalysts to boost bidirectional activities is craved but remains a huge challenge. Herein, derived from the spent lithium-ion batteries, a tandem catalyst is subtly synthesized and significantly accelerates the CO2 reduction and evolution reactions (CO2 RR and CO2 ER) kinetics with an in-built electric field (BEF). Combining with the theoretical calculations and advanced characterization techniques, this work reveals that the designed interface-induced BEF regulates the adsorption/decomposition of the intermediates during CO2 RR and CO2 ER, endowing the recycled tandem catalyst with excellent bidirectional activities. As a result, the spent electronics-derived tandem catalyst exhibits remarkable bidirectional catalytic performance, such as an ultralow voltage gap of 0.26 V and an ultrahigh energy efficiency of 92.4%. Profoundly, this work affords new opportunities to fabricate low-cost electrocatalysts from recycled spent electronics and inspires fresh perceptions of interfacial regulation including but not limited to BEF to engineer better Li-CO2 batteries.

20.
Anal Chem ; 85(24): 11720-4, 2013 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-24256069

RESUMO

On the basis of the absorption and emission spectra overlap, an enhanced resonance energy transfer caused by excition-plasmon resonance between reduced graphene oxide (RGO)-Au nanoparticles (AuNPs) and CdTe quantum dots (QDs) was obtained. With the synergy of AuNPs and RGO as a planelike energy acceptor, it resulted in the enhancement of energy transfer between excited CdTe QDs and RGO-AuNPs nanocomposites. Upon the novel sandwichlike structure formed via DNA hybridization, the exciton produced in CdTe QDs was annihilated. A damped photocurrent was obtained, which was acted as the background signal for the development of a universal photoelectrochemical (PEC) platform. With the use of carcinoembryonic antigen (CEA) as a model which bonded to its specific aptamer and destroyed the sandwichlike structure, the energy transfer efficiency was lowered, leading to PEC response augment. Thus a signal-on PEC aptasensor was constructed. Under 470 nm irradiation at -0.05 V, the PEC aptasensor for CEA determination exhibited a linear range from 0.001 to 2.0 ng mL(-1) with a detection limit of 0.47 pg mL(-1) at a signal-to-noise ratio of 3 and was satisfactory for clinical sample detection. Since different aptamers can specifically bind to different target molecules, the designed strategy has an expansive application for the construction of versatile PEC platforms.


Assuntos
Aptâmeros de Nucleotídeos/metabolismo , Técnicas Biossensoriais/métodos , Grafite/química , Processos Fotoquímicos , Pontos Quânticos , Animais , Aptâmeros de Nucleotídeos/genética , Sequência de Bases , Antígeno Carcinoembrionário/análise , Antígeno Carcinoembrionário/química , Antígeno Carcinoembrionário/metabolismo , Eletroquímica , Ouro/química , Nanopartículas Metálicas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA