Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Transl Stroke Res ; 14(5): 752-765, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-35962915

RESUMO

Microthrombosis plays an important role in secondary brain injury after experimental subarachnoid hemorrhage (SAH), but the specific mechanism of microthrombosis remains unclear. The purpose of this study was to investigate the role of neutrophil extracellular traps (NETs) in microthrombosis after SAH. SAH was induced in male C57BL/6 mice using an endovascular perforation technique. The marker protein of NETs, citrullinated histone H3 (CitH3), was significantly elevated in the cerebral cortex after SAH, and was co-labeled with microthrombi. Both depletion of neutrophils by anti-Ly6G antibody and DNase I treatment significantly reduced the formation of NETs and microthrombi, and ameliorated neurological deficits, brain edema, BBB disruption, and neuronal injury at 24 h after SAH induction. Cerebral hypoperfusion in the first hours after SAH is a major determinant of poor neurological outcome; in this study, we found that DNase I treatment significantly improved the restoration of early cortical perfusion after SAH. In addition, DNase I treatment also significantly attenuated cerebrospinal fluid (CSF) flow after SAH, which was associated with the diffusion barrier caused by microthrombi in the paravascular space after SAH. In conclusion, NETs are associated with early microthrombosis after SAH; they may be a novel therapeutic target for early brain injury (EBI) after SAH.


Assuntos
Edema Encefálico , Lesões Encefálicas , Armadilhas Extracelulares , Hemorragia Subaracnóidea , Trombose , Camundongos , Masculino , Animais , Hemorragia Subaracnóidea/tratamento farmacológico , Armadilhas Extracelulares/metabolismo , Camundongos Endogâmicos C57BL , Lesões Encefálicas/complicações , Lesões Encefálicas/tratamento farmacológico , Edema Encefálico/tratamento farmacológico , Trombose/complicações , Barreira Hematoencefálica/metabolismo
2.
Chin Neurosurg J ; 9(1): 35, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38062522

RESUMO

BACKGROUND: Hematoma expansion is a determinant of poor outcome of intracerebral hemorrhage but occurs frequently, especially in warfarin-associated intracerebral hemorrhage (W-ICH). In the present study, we employ the warfarin-associated intracerebral hemorrhage (W-ICH) rat model, to explore the efficacy and potential mechanism of glibenclamide pretreatment on hematoma expansion after intracerebral hemorrhage, hoping to provide proof of concept that glibenclamide in stroke primary and secondary prevention is also potentially beneficial for intracerebral hemorrhage patients at early stage. METHODS: In the present study, we tested whether glibenclamide, a common hypoglycemic drug, could attenuate hematoma expansion in a rat model of W-ICH. Hematoma expansion was evaluated using magnetic resonance imaging; brain injury was evaluated by brain edema and neuronal death; and functional outcome was evaluated by neurological scores. Then blood-brain barrier integrity was assessed using Evans blue extravasation and tight junction-related protein. RESULTS: The data indicated that glibenclamide pretreatment significantly attenuated hematoma expansion at 24 h after W-ICH, thus mitigating brain edema and neuronal death and promoting neurological function recovery, which may benefit from alleviating blood-brain barrier disruption by suppressing matrix metallopeptidase-9. CONCLUSIONS: The results indicate that glibenclamide pretreatment in stroke primary and secondary prevention might be a promising therapy for hematoma expansion at the early stage of W-ICH.

3.
J Neurosurg ; 135(4): 1105-1112, 2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33418533

RESUMO

OBJECTIVE: Tissue plasminogen activator (tPA) fibrinolysis did not improve functional outcomes of patients with intraventricular hemorrhage (IVH), largely because of the unsatisfactory clot clearance. The presence of neutrophil extracellular traps (NETs) within the clot has been confirmed to impair tPA fibrinolysis, but the mechanism has been unclear. The authors hypothesized that cell-free DNA (cfDNA), the main framework of NETs, might be the important reason for the fibrinolysis resistance, and they validated the hypothesis, hoping to provide a new target to promote intraventricular fibrinolysis. METHODS: First, cfDNA was detected in IVH clots by immunofluorescence staining in a rat model of IVH. Second, after blood (with or without exogenous cfDNA) intraventricular injection, IVH rats were given intraventricular infusion of 2 µl of saline, tPA, or tPA + DNase1 randomly. Then, the ventricular volume, animal behavior, and reactive astrocyte proliferation were assessed. Third, the IVH clots were collected for fibrinolysis assay in vitro. Finally, the effects of exogenous cfDNA in IVH were evaluated. RESULTS: The presence of cfDNA in clots was observed as early as 1 hour after IVH. Compared with the whole-blood model, blood + cfDNA caused more severe ventricular dilation (day 7: blood 32.47 ± 2.096 mm3 vs blood + DNA 40.09 ± 2.787 mm3, p < 0.05), increased fibrinolysis resistance to tPA (day 7: tPA + DNA 26.04 ± 1.318 mm3 vs tPA 22.15 ± 1.706 mm3, p < 0.05), and further deteriorated the functional defects in rats (blood vs blood + DNA, p < 0.05). Degradation of cfDNA by DNase1 further enhanced the fibrinolysis effects on relieving the ventricular dilation (day 7: tPA + DNase1 11.67 ± 2.023 mm3 vs tPA, p < 0.05), improving the functional outcome (tPA vs tPA + DNase1, p < 0.05) and reducing periventricular astrocyte proliferation. CONCLUSIONS: cfDNA impaired tPA fibrinolysis for IVH, and degradation of cfDNA may be a new target to improve this condition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA